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need for effective estimation and control algorithms for hybrid, nonlinear
systems. This book develops and illustrates a highly effective, computa-
tionally efficient, and flexible family of algorithms that can be used for the
design of state estimators and feedback controllers for a variety of nonlinear
plants. Several applications are studied, including tracking a maneuvering
aircraft, automatic target recognition, and the decoding of signals transmit-
ted across a wireless communications link.

The authors begin by setting out the necessary theoretical background,
discussing infinite-dimensional algorithms and methods of nonlinear es-
timation. They develop a practical, finite-dimensional approximation to
an optimal estimator and demonstrate its application to such problems as
target tracking (including the jammed radar case), control of hybrid sys-
tems, warhead impact prediction, and an innovative signal demodulator.
Throughout the book they illustrate theoretical results by simulation of
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Preface

Who Should Read This Book

This book is intended for engineers and designers who seek to develop effective
estimation and control algorithms for nonlinear systems. The reader is assumed
to have some background in random processes and estimation (see, for example,
[Pap91]) along with familiarity with concepts of feedback control phrased within
the context of linear state space models (see, for example, [DB95] or [Wol94]).
This background should include knowledge of

• random variables and processes,
• probability density and distribution functions for random variables, both

continuous and discrete,
• moments and cross moments, including correlation functions,
• second-order properties of stationary processes, including power spectral

densities,
• conditional expectations with respect to an observation process,
• fundamental properties of feedback systems, including stability and con-

trollability of a system model.
Both time-continuous and time-discrete processes will be encountered. Some fa-
miliarity with mean-square estimation is useful. For example, in the development
of the Kalman filter [BW92, Chapter 7], linear state space models are integrated
with Gaussian white noise. The Kalman filter will form a basis of comparison for
many of the estimators that follow.

Our treatment is applications oriented, but the reader will find that nonlinear
systems require more detailed analysis than is necessary in the study of linear
systems. For example, a common approach to linear estimation uses a system
model phrased as a set of ordinary differential equations with continuous white
noise excitation [May79, Chapter 4]:

ẋt = Axt + But + Cwt , (0.1)

xiii
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where xt is the state, ut is the actuating signal, and wt is an exogenous, Gaussian
white noise excitation. This model, or its time-discrete analogue, suffices to rep-
resent the dynamics of system evolution. The Kalman filter is based, in part, upon
such a model.

Equation (0.1) is an adequate expression of system dynamics in many situations.
But because of the pathological properties of white noise, it is sometimes preferable
to replace the differential equation (0.1) with an integral equation:

xt = x0 +
∫ t

0
(Axs + Bus) ds +

∫ t

0
C dws . (0.2)

It is easier to give consistent meaning to the integrals in Equation (0.2) than it is
interpret the path properties of white noise [WH85, Chapter 3, Section 8]. Stochas-
tic integral equations such as (0.2) are often written in a differential form using
increments [Ell82]; for example, (0.2) would be written

dxt = (Axt + But) dt + C dwt , (0.3)

where (0.3) is taken to be shorthand for (0.2). System analysis can then be carried
out in terms of the increments, retaining only terms of order one or less in dt . This
formal calculus of increments permits a coordinated treatment of processes, both
continuous and piecewise continuous.

When the system is nonlinear, additional difficulties arise because nonlinear
operations on white noise paths are difficult to interpret, whether in the form (0.1)
or (0.2). Suppose the dynamic evolution of the system is represented by a vector
stochastic differential equation:

dxt = f(xt , ut) dt + g(xt , ut) dηt , (0.4)

where {ηt} is a random process and represents the unpredictable disturbances that
influence state evolution. Equation (0.4) is interpreted to say that, from state xt

at time t , the plant has a deterministic drift in the direction f(xt , ut). About this
extrapolation, there is a random perturbation (dηt ) with multiplier g(xt , ut).

In an introductory analysis, we might divide both sides of (0.4) by dt to arrive
at a model that has a more conventional appearance:

ẋt = f(xt , ut)+ g(xt , ut)η̇t .

If {ηt} were Brownian motion, {η̇t} would be Gaussian white noise. However, {ηt}
is not necessarily Brownian and may indeed have discontinuous sample paths.
Equation (0.4) is better written

xt = x0 +
∫ t

0
f(xs, us) ds +

∫ t

0
g(xs, us) dηs . (0.5)
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Because the integrands in (0.5) are random, care must be exercised in their expli-
cation.

Preliminaries

First, we present some basic notational conventions. An integer index set {1,. . . , S}
will be designated S. Boldface vectors labeled e are canonical unit vectors whose
dimension is always clear from the context: ei is the i th canonical unit vector in
Rk . We shall encounter Ei j = ei e′j and Ei = Ei i ; 1, a vector of “ones;” and I, the
identity matrix. The dimension of these matrices will be determined by context. The
statement “x is N(m, P)” (or “x ∈ N(m, P)”) means that x is a Gaussian random
variable with (mean, covariance) equal to (m, P), though sometimes N(m, P) will
represent the probability density itself. The Hadamard product “∗” is defined by
(x ∗ y)i = xi yi . If λ is a vector, none of whose components is zero, we shall refer
to the vector of inverses as λ−1: λ ∗ λ−1 = 1. An integral over the whole space is
written

∫
�; for example,

∫
� f (u) du indicates an integration over the full range of

the variable labeled u.
In what follows, subscripts are used in a variety of ways. We wish to avoid iterated

subscripts because such forms make the equations harder to read. Suppose we are
dealing with the time interval [0,T], and at time t , νt is the value of the vector
process {νt ; t ∈ [0,T]} (written {νt}). Where no confusion will arise, a subscript
may identify time, the component of the vector, or a particular set of components
of the vector. For the process {νt}, {ν1} denotes the scalar process that is the first
component of {νt}, while {νx} is a subvector of processes in {νt} that is associated
in some way with another process {xt}.

This notation becomes ambiguous when the process is time discrete: {νt ; t = kT,
k ∈ N}. The sequence {νkT ; k ∈ N} will be written {ν[k]}. A component sequence
from {ν[k]} would be {νi [k]}. This notational convention becomes complicated
when {ν[k]} is a sequence of functions of some spatial variable “z.” When the
spatial variable needs to be made explicit, the sequence is written {ν[k](z)} with
components {νi [k](z)}. If there is concern that the meaning of the subscript is hard
to determine from context, the more explicit notation will be used (e.g., (νi [k] =
e′iν[k]).

Subscripts also appear as identifiers. To make explicit the variables involved in
correlation and covariance matrices, they are sometimes identified with subscripts
(e.g., E[xy′] = Rxy). The time dependence of the moment may be written as a
direct argument (e.g., E[xt y′t ] = Rxy(t) or, alternatively, E[x[k]y[k]′] = Rxy[k]).
Subvectors and submatrices will be denoted in different ways depending on context:
If Pxx is a matrix related to a vector x, Pxx(r : s, t : v) is the submatrix formed
from rows r through s of columns t through v; Pxi x is the i th row of the matrix



xvi Preface

(and is usually associated with the i th component of the vector x) and Pxxi is the
i th column. A matrix Syy(t) is the square root of the positive symmetric matrix
Pyy(t) if Syy(t)′Syy(t) = Pyy(t). There are many square roots of a positive matrix
and their differences are important in computation. We are concerned only with
representation of matrices and thus any of the square roots will do for our purposes.
Given the multiplicity of uses, when confusion regarding the interpretation of a
subscript may exist, multiple subscripts will perforce be used.

Random Processes

In this book we will look at the properties of random processes defined on a
probability space (�,F,P) (see, [Ell82]) on a time interval [0,T] (alternatively
t = kT ; k ∈ N). The set of events F is a σ -field. A random variable is a (real-
valued) F-measurable function. A random vector has components that are random
variables, and a random process is a time-indexed set of random vectors [Pap91,
Chapter 10].

In estimation and control the notion of conditional expectation is important.
Our definition of conditional expectation differs from that found in introductory
engineering texts. Suppose x and y are random variables (understood to be on
(�,F,P)). Another σ -field, Y , on � is said to be coarser than F if every element
of Y is necessarily an element of F : Y is coarser than F (i.e., Y ⊂ F ); F is
finer than Y . The coarsest σ -field (necessarily within F) with respect to which
y is a random variable is said to be the σ -field generated by y and is possibly
labeled descriptively (e.g., Y). Clearly y is a Y-random variable (a random variable
on (�,Y,P)). The expectation of x given y (denoted E[x |Y]) is the Y-random
variable with all of the orthodox properties of conditional expectation given in
[Pap91, Chapter 7]. Idiomatically, we would say that E[x |Y] is a random variable
expressible as a function of y.

We will deal with conditioning, not just on random variables, but on the sample
paths of random processes. On (�,F,P), there are several elemental random
processes. All of them are piecewise right continuous (or continuous); that is, if {yt}
is a random process, yt = yt+. Let {xt} and {yt} be random processes and consider
{yt} on the interval [0, s]. There is a coarsest σ -field within F with respect to which
events determined by {yu; u ∈ [0, s]} (the past and present of {yt}) are measurable.
This σ -field will be called Ys . The indexed family of σ -fields, {Yt}, is the filtration
generated by {yt} (see, [Ell82, p. 332]). This filtration is right continuous because
{yt} is right continuous and, moreover, is such that if s ≤ t then Ys ⊂ Yt . There
is also a left continuous filtration generated by {yu; u ∈ [0, s)} and labeled {Y t−}.
A process {xt} is Yt -adapted if xt is a Yt -random variable for every t . A process
{xt} is Yt -predictable if xt is Y t−-measurable for every t. Indeed, the predictable
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version† of a right continuous process is given by its left continuous modification.
So, if {xt} is a right continuous random process and generates {X t}, then {xt−}, the
left continuous modification of {xt}, generates {X t−}, the filtration of “past events.”

There may be different filtrations on (�,F,P) relevant to the application, and
if we wish to distinguish the filtration of interest we will write the probability space
and filtration as (�,F,P;F t). All of the elemental processes in this book are
F t -adapted.

If {xt} is a state process and {yt} is an observation process, an engineer may seek
the expectation of xt conditioned on the past of {yt}: Idiomatically this estimate is
said to be a function of the observations up to time t or to be causal. Write this
conditional expectation E[xt |Yt ]. The conditional mean E[xt |Yt ] is a Yt -random
variable, which we will write as x̂t if the conditioning filtration is apparent from
context. The random process {x̂t} is a Yt -adapted random process (also called a
Yt -random process). If confusion might arise as to the conditioning filtration, the
conditional mean process would be written {x̂t ;Yt}. Since Yt is coarser than F t

the estimation error is an F t -random variable. For example, xt is F t -adapted and
x̂t is Yt -adapted. Hence, the error x̃t = xt − x̃t must be an F t -random variable but
likely not a Yt -random variable.

The structure of random processes on (�,F,P;F t ) can be quite complex. For-
tunately we will not have to face processes of a general type. Instead, only two
circumscribed classes of elemental F t -random processes will appear in the ap-
plications that follow. The first is composed of F t -Brownian motions: A (vector)
random process {wt} is a Brownian motion if w0 = 0, and when s ≤ t, wt −ws is
N(0, W (t−s)) and independent ofF s (see, [Ell82, Definition 12.27]). We will refer
to W as the intensity of the Brownian motion. It is easily seen that E[wtw

′
t ] = W t .

Brownian motion is an F t -martingale process: If s ≤ t , E[wt |F s] = ws .
It is useful to develop a formal calculus of increments. Increments are defined in

the forward direction (e.g., dwt = wt+dt −wt with dt > 0). Associated with {wt}
is the F t -predictable quadratic variation process, 〈w,w;F t 〉t . The F t -predictable
quadratic variation process is the integral of its increments, where d〈w,w;F t 〉t =
E[dwt dw′

t |F t ]. Since dwt dw′
t = W dt [WH85, Proposition 3.4], it follows that

〈w,w;Gt 〉t = W t for any filtration {Gt} (d〈w,w;Gt 〉t = W dt).
The second class of elemental processes contains Ft -Markov processes on the

canonical unit vectors in RS . Such a process, {φt}, is characterized by its initial
probability distribution, (φ̂0), and its transition rates. Let the S × S-matrix Q have
as its elements Qi j = P(φt+dt = e j |φt = ei )/dt if i �= j , with Qii = −∑ j �=i Qi j .
The generator of the Markov process {φt} is Q′, a matrix with nonnegative elements

† If xt and yt are random variables on the same probability space and P(xt = yt ) = 1 for all t , then
the variables are said to be versions or modifications of each other.
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off the diagonal and column sums equal to zero. Because the state space of {φt} is the
canonical unit vectors, P(φt = ei ) = E[ei

′φt ]. Let us add the discontinuities to the
forward increment. Define dφt as φt+dt − φt−. If {φt} has a discontinuity at time t ,
this will be denoted �φt = φt −φt−. It is easily shown that E[dφt |F t ] = Q′φt dt .

Define dmt = dφt − Q′φt dt . Then {mt} has discontinuities where {φt} does:

�mt = mt − mt− = φt − φt−.

Clearly, E[dmt |F t ] = 0: {mt} is an Ft -martingale (see, [EAM95, Section 7.2]).
The Ft -predictable quadratic variation of {mt} is defined as with {wt}, but {mt} has
a fundamentally different character. First, if {φt}makes no transitions in the interval
[t, t + dt], then dmt dm ′

t ≈ 0: {mt} is called a purely discontinuous Ft -martingale
because, excluding jumps, its quadratic variation is zero. Alternatively, if {φt}makes
the transition ei �→ e j in [t, t + dt], then �mt�m ′

t = (e j − ei )(e j − ei )
′ =

Ei + E j − Ei, j − E j,i . If φt = ei ,

d〈m,m;F t 〉t =
∑

j

(Ei + E j − Ei j − E j i )P(φt+dt = e j |φt = ei ).

The general expression for d〈m,m;F t 〉t = E[�mt�m ′
t |F t−] is given as a func-

tion of Q in the Appendix 1.
Sometimes martingales with continuous paths (e.g., {wt}) appear in combination

with martingales with discontinuous paths (e.g., {mt}) to form a composite mar-
tingale {ηt}. In fact, any Ft -martingale can be separated into its continuous and
discontinuous parts: ηt = ηc

t + ηd
t where {ηc

t } is a continuous process and {ηd
t } is

purely discontinuous. The two are mutually orthogonal: d〈ηc
t , η

d
t ;F t 〉t = 0 [Ell82,

Chapter 9]. For example, d〈w,m;F t 〉t = E[dwt dm ′
t | F t ] = 0. Additionally,

two purely discontinuous processes without common jump times are orthogonal:
If {�φt�ψ ′

t } is essentially the zero process, d〈φ,ψ;F t 〉t = 0.
The composite martingale {ηt} has associated with it another quadratic pro-

cess. The optional quadratic variation, [η, η]t , is determined from its increments:
d[η, η]t = dηt dη′t . It can also be found by adding the outer product of the jumps
in {ηt} to the predictable quadratic variation:

d[η, η]t = d〈ηc
t , η

c
t ;F t 〉t +�ηt�η′t .

The optional cross quadratic variation of two martingales is similarly defined
[Kri84, Chapter 4].

Stochastic Differential Equations

Equation (0.5) relates the actuating signal to the system state. This is an integral
equation with differential embodiment given in (0.4). For this model to be useful,
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each of the terms on the right side of (0.5) must be given clear meaning. The first in-
tegral,

∫
[0,t] f(xs, us)ds, is of a conventional sort if the sample functions of {f(xt , ut)}

are well behaved. The second integral,
∫

[0,t] g(xs, us)dηs , is more problematic. The
integrand {g(xt , ut)} is an Ft -random process and in what follows {ηt} is an Ft -
martingale. It is advantageous to define the integral using the predictable version
of the integrand; that is,

∫
[0,t] g(xs, us)dηs is better written

∫
[0,t] g(xs−, us−)dηs

[Ell82, Theorem 11.44]. For consistency, the stochastic differential equation could
be written

dxt = f(xt−, ut−) dt + g(xt−, ut−) dηt

since the increment in {xt} depends upon the antecedent values of the arguments
rather than their current values. For simplicity, we will not distinguish the pre-
dictable versions of the random processes in the differential equations even though
the left continuous version of the integrands will appear in the integrals.

The output of the system is represented with a stochastic differential equation
too:

dgt = r(xt , ut) dt + s(xt , ut) dnt , (0.6)

where {gt} is the output process or the observation process as appropriate. The com-
ponents of the Ft -martingale {nt} that appear in (0.6) would be called observation
noise or the equivalent. It is through {gt} that the value of {xt} can be determined. Let
the filtration generated by {gt} be labeled {Gt}. This output filtration is a subfiltration
of Ft . For any Ft -random process {ζt}, denote the Gt -conditional expectation with
a circumflex and the Ft -conditional error with a tilde: For example, ζ̂t = E[ζt |Gt ];
ζ̃t = ζt − ζ̂t .

An important process related to the Gt -mean is the innovation process. The
innovation process, labeled {νt}, is generated from its increments:

dνt = dgt − E[dgt |Gt ].

This terminology is “motivated by the observation that, formally, νt+h − νt repre-
sents the ‘new’ information about (the system state) obtained from observations
between t and t + h” [Ell82, Definition 18.6].

Sometimes the observations are not time continuous but instead have a natural
sampling interval. An example of this is a radar tracking an aircraft. The aircraft
path is continuous (i.e., modeled as in (0.4)), but the observations occur every T
seconds beginning at t = 0. In this case, we would replace (0.6) with

g[k] = r(x[k], u[k])+ s(x[k], u[k])n[k], (0.7)

where g[k] is the output (or observation) at time t = kT , and similarly for x[k] and
u[k]. In this model, {n[k]} is not typically anFt -martingale but may be a sequence of
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martingale increments (E[n[k] |F kT ] = 0). The output sequence, {g[k]}, generates
a filtration, {Gt}, which is defined for all t ∈ [0,T], not just t ∈ {0, T, 2T, ....}.
However, since new information appears at the output at distinct times, it is true
that {x̂t} tends to have discontinuities at sample times.

In some circumstances, the system state is time discrete:

x[k + 1] = f(x[k], u[k])+ g(x[k], u[k])η[k + 1]. (0.8)

If the state and measurement grid are the same, a time-discrete system with time-
discrete measurements has a structure like that given above with natural changes
in terminology.

Some Useful Results from Martingale Theory

This section lists some useful results from martingale theory. The statements do
not include certain qualifications to be found in the references [Ell82].

Definition 1 The process {Xt} is corlol (for continuous on the right, limits
on the left) if there is a modification of {Xt} such that

Xt(ω) = lim
s→t+

Xs(ω)

and

Xt−(ω) = lim
s→t−

Xs(ω).

Definition 2 Given any process {Xt} adapted toFt , if there exists a process
{At} such that A0 = 0, {At} isFt -predictable, {At} has corlol sample paths
of locally finite variation, and {Xt − At} is an Ft -martingale, then {At} is
called the predictable compensator of {Xt} relative to Ft

Theorem 1 (Doob–Meyer Decomposition Theorem) If the random pro-
cess {Xt} has a predictable compensator, then it is unique in the sense that
any two predictable compensators are equal to each other for all t .

This statement of the Doob–Meyer Decomposition Theorem is Proposition
3.2 in [WH85]. See [DM82] for a proof.

Theorem 2 (Martingale Representation Theorem) Suppose the filtra-
tion {Ft} is generated by the local semimartingale Xt = Bt + Wt , where
{Bt} is of bounded variation and {Wt} is a Brownian motion or a point pro-
cess. Then any Ft -local semimartingale {Zt} can be written as a stochastic
integral against {Wt}. That is, there exists an Ft -predictable function {γt}
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such that

Zt = Z0 +
∫ t

0
γs dWs .

The Brownian motion version is due to a generalization by Fujisaki et al.
[FKK72] of the works of Itô [Itô51], Kunita and Watanabe [KW67], and
Clark [Cla70]. The extension to point processes is due to Brèmaud [Brè72].

Theorem 3 Let {St} be a process, not necessarily adapted toGt , a filtration
generated by the continuous or purely discontinuous martingale {νt}. Let
Ŝt = E[St |Gt ], and define a process {Bt} by d Bt = E(d St |Gt). Then
{Ŝt − Bt} is a Gt -martingale, and there exists a Gt -predictable function γt

such that

d Ŝt = E(d St |Ft)+ γt dνt .

Proof ([WH85]): Since Gt is increasing,

E(d Ŝt |Gt) = E{[E(St+dt |Gt+dt)− E(St |Gt)]}
= E(St+dt |Gt)− E(St) |Gt)

= d Bt .

Therefore, Ŝt − Bt = Mt is a Gt -martingale. By Theorem 2, Mt can be
represented as a stochastic integral against {νt}.

Theorem 3 provides a cornerstone for system estimation theory. It implies that
under modest conditions, the estimator of St is the solution to a stochastic differential
equation driven by the innovation process.





1
Hybrid Estimation

1.1 Introduction

Common problems in design require that an engineer devise a control or decision
algorithm that converts measurements of system and environmental variables into
signals that aid in system regulation. For example, a control node converts sensor
outputs into an actuating signal that moves the system toward the desired operating
point and keeps it there. At this foundational level, the engineer must formulate
a mapping from the system observables into an action or report; for example, a
feedback regulator converts the measured outputs of the system to be controlled
(the plant) into an input that stabilizes the system.

Design is made difficult by disturbances internal to the system and by noise at
its output. For example, there may be no sensors that measure those plant variables
most useful for regulation, or, if measured, the variables may be masked by noise
in the sensor-to-regulator link. Lacking omniscience, an engineer must process the
available measurements to produce a good approximation to relevant but “hidden”
variables. And this inference must be done on-line. The processing algorithm must
not only be adapted to the incoming data stream, it must be of a form that can be
implemented: An implementable estimation algorithm is an explicit mapping of
the sensor output process (the measurements) into a (nearly) concurrent estimate
of the required variables. In the applications studied here, the need for contempo-
raneous response limits consideration to finite-dimensional recursive algorithms;
new observations are integrated into an estimate in an accretive manner.

Analytical design in estimation and control begins with a formal mathematical
description of the system to be controlled (the plant model). The model delineates
the response of the plant to endogenous actuating signals as well as representing
the influence of exogenous disturbances common to the application. The system
designer selects a control policy or a state estimation algorithm based in large part
upon the behaviors predicted by the model. The practicality of analytic procedures is

1
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linked closely to the realism of the plant model. However, realism must be tempered
by the need to have a model that is simultaneously flexible and tractable.

One useful paradigm phrases the plant model in terms of a set of nonlinear
stochastic differential equations. Let us start with a probability space (�,F,P) and
a time interval of interest, [0,T]. On this space there is a right-continuous filtration
{Ft ; 0 ≤ t ≤ T} and right-continuous, Ft -adapted random processes, {�t}, {wt},
and {nt}. Subject to initial conditions χ0 and g0, the plant model is written:

plant model

dχt = f(χt , υt ,�t) dt + g(χt , υt ,�t) dwt , (1.1)

dgt = r(χt , υt ,�t) dt + s(χt , υt ,�t) dnt , (1.2)

where {υt} is an s-dimensional actuating process (the plant input), {gt} is an r -
dimensional observation process (the plant output), and {χt} is an n-dimensional
internal process (the plant state). Equation (1.1) describes the temporal evolution
of the internal variables within the plant, and (1.2) describes the sensor outputs
available for estimation and/or control.

This plant model is more complicated than that encountered in introductory
studies of feedback control. In applications, even when the actuating process is
specified, the realizations of the state and output paths are unpredictable – there
are many effects not well captured in a deterministic model. Chance influences in
the plant and sensor are represented by the stochastic processes in (1.1) and (1.2).
Various accretive effects are represented by {wt} and {nt}; for example, {wt} could
describe the high frequency modes ignored in a low-dimensional plant model, and
{nt} could describe noise at the sensor output. The environmental process, {�t},
denotes external conditions of a more global sort that affect plant operation. The
value of {�t}might indicate the operational status of a subelement within the plant,
external conditions that influence the plant dynamics (e.g., temperature), the level
of loads placed upon the system by linked elements, etc. In contrast to {wt} and
{nt}, which tend to be aggregations of small increments, �t may symbolize tem-
porally distinct events. (Friedland called �t the metastate when used in the context
of adaptive control; see [Fri96, Chapter 10].) All of these disturbance processes are
viewed by the designer as exogenous.

In both estimation and the control, the output signal, {gt}, is processed to create
causal estimates of important system variables. A filter provides estimates of the
current values of both the plant state vector and the environmental process. A
predictor estimates future values of the same variables. Often, the environmental
process has a character fundamentally different from the plant state. The value of�t
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may be a symbolic variable (e.g., �t ∈ {normal operation, degraded operation}).
In this event, the average value of �t has no meaning. Rather, the probability
distribution of �t is required to properly assess the status of the plant. Denote the
filtration generated by {gt} by {Gt}. If mean square error is used as a performance
index, the estimation problem can be posed as follows:

Find an explicit processing algorithm to generate (or approximate) the mean plant
state χ̂t = E[χt |Gt ] and the Gt -probability distribution of �t .

There are applications in which even this will not suffice and more comprehensive
statistical properties of the plant processes are required.

Unfortunately, even when formal descriptions of the exogenous processes are
integrated with (1.1) and (1.2), an elementary solution to this estimation problem
does not currently exist. There is, however, one special case in which astounding
success has been achieved. So much so that the solution thus derived is used in
circumstances far removed from those in which it was developed. Specifically,
suppose that the system has “smooth” nonlinearities, that the plant noise, {wt}, is a
Brownian motion, and that the environmental process, {�t}, is constant with known
value �c. Associated with �c there is a nominal operating condition, both in the
state and in the actuating signal labeled (χn, υn). Frequently (χn, υn) is a condition
of plant stasis: f (χn, υn,�c) = 0. The operating condition (or regime) is known
by different names: in the process control industry, (χn, υn) is referred to as the
set point or the operating point; in aircraft flight control, (χn, υn) is referred to as
the trim condition; in other applications, (χn, υn) is simply the reference point. We
will use these terms interchangeably and note in this context that �t simply points
to the operating mode or regime with its value having no intrinsic meaning.

For a particular regime, there is a local description of the plant phrased in terms of
a set of perturbation variables. These are defined as the (usually small) deviations
in state and excitation from the set point: xt = χt − χn; ut = υt − υn . Using
orthodox methods and neglecting higher order terms, the perturbation processes
are commonly represented by a linear stochastic differential equation with initial
condition taken to be Gaussian: x0 is N(x̂0, Pxx(0)), and

dxt = (Axt + But) dt + C dwt , (1.3)

where {wt} is a Brownian motion with intensity W (d〈w,w〉t = W dt). Call {xt} the
base-state process to distinguish it from the plant state process, {χt}; call {ut} the
regulation signal to distinguish it from the plant input, {υt}. Equation (1.3) relates
the base-state to the inputs {ut} (endogenous) and {wt} (exogenous). The base-state
excitation is a Brownian motion with intensity CWC′ = Rχ . Of course, if the plant
is linear over a large region of the state space, (1.3) is valid without consideration
of the set point. In such applications, it is understood that χn and υn are both zero.
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The set point is known (P[�t ≡ �c] = 1) and need not be estimated, but
the plant state is frequently not known and must be inferred from sensor outputs.
Suppose a sensor provides a noisy but linear plant state measurement,

plant state measurement: time-continuous

dyt = Hχt dt + dnt , (1.4)

where {nt} is a Brownian motion independent of {wt}, with intensity Rx > 0 (d〈n, n〉t
= Rx dt), and y0 = 0. By subtracting the contribution of the set point from
the output, (1.4) can be written as a noisy, linear measurement of the base-state:
dyt − Hχndt = H xt dt + dnt . The innovation increment dνt = dyt − d ŷt can be
written H x̃t dt + dnt , where x̃t = xt − x̂t . When there is only one sensor, gt ≡ yt .
To differentiate this case from others that follow, denote the filtration generated
by {yt} by {Yt} (= Gt in this case), where a circumflex may be used to denote
Yt -expectation if no confusion will result. Equations (1.3) and (1.4) will be called a
linear–Gauss–Markov (LGM) model even when x0 is not Gaussian. Although the
observation is unconventional, the regime offset is known and is accommodated
in a direct fashion. The base-state estimator is known for the LGM problem: the
Kalman filter. The Kalman filter generates {x̂t} using a simple recursive algorithm.
The plant state estimator is χ̂t = χn + x̂t .

In the systems we will study, {�t} is not nearly so obliging. Instead of a single op-
erating point, {�t}may move about in its range space in response to the macroevents
that influence the plant. The temporal structure of the regime process has a funda-
mental impact on system analysis. If, for example, {�t} has sample paths that are
well described by a diffusion process, then {�t} can be integrated into (1.1) as an
additional plant state. This is an attractive option when the time constants of {�t}
are comparable with those of the plant, though this inclusion compounds the plant
nonlinearity.

In other applications, {�t} has a distinguishing feature that precludes orthodox
state augmentation. Suppose the plant has S possible operating regimes, and at any
particular time, �t takes on a value selected from a set of size S: �t ∈ {�i ; i ∈ S}.
The plant now has S possible reference points (or set points, etc.), and these are
identified with the S possible values of {�t}; that is, there are S vector pairs,
{(χi , υi ); i ∈ S}, which designate the S relevant stasis conditions for the plant. For
example, the kth nominal operating point for the plant is (χk, υk), and if �t = �k

the plant input and state should be near (χk, υk).
For simplicity, array the nominal states (respectively nominal actuating signals)

as an n × S matrix χ (respectively an s×S matrix υ): χ = [χi ] (respectively
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υ = [υi ]). During operation, the system will operate in one regime for a time
(�t = �i for t ∈ [a, b)) and then suddenly shift (�b = � j ) to another in response
to an external event or change in the surrounding environment. In most applications,
the discontinuous sample paths of {�t} are an approximation to the continuous
though abrupt modal transitions that actually occur. Nevertheless, the representation
of {�t} with a process of piecewise constant paths is a useful abstraction when the
interval over which the modal transition takes place is short as compared to the
important time constants of the plant.

Since the environmental process has a finite state space, {�t} can be represented
using a more illuminating notation. Let φt be a pointer to the current regime: The
state space of φt consists of the S canonical unit vectors in RS (φt ∈ {e1, . . . , eS}).
The component in φt with value one marks the current mode of operation: If
�t = �k then φt = ek . The {φt} process is called the modal-state process to
differentiate it from the base-state process. The base-state variables are deviations
from the current set point: xt = χt −χφt ; ut = υt −υφt . The comprehensive state
of the system is the composition of the base- and modal-states: The zygostate is the
pair (xt , φt). Since φt is an indicator vector, the expectation of the modal-state is
actually the conditional probability vector φ̂t = [P{φi = ei |Gt}].

Control in a multiregime environment presents some subtle challenges. When
the regime is known and constant (e.g., φt ≡ ei ), the actuating signal has a natural
decomposition (υt = ut + υφt ) into a feedforward component associated with the
set point (υei = υi ) and a feedback component (ut ) that maintains the plant state
near the set point (χt ≈χi ). When the modal-state is neither known nor measured,
this implementation is not possible because proper feedforward control cannot be
generated. In applications, a variety of replacements for {υφt} have been proposed.
We will not explore issues of feedforward control in any depth here. We will simply
employ {υφ̂t} as the “feedforward” component of the actuating signal: Ideal set
point actuation will be replaced with its expectation. Note, however, that a failure
to generate the proper feedforward actuating signal has an influence that must be
included in the base-state dynamics.

A comprehensive plant model requires a representation of evolution, both in-
tramodal and intermodal. Consider the former first. During an extended (known)
modal sojourn, proper control will place and maintain the plant state vector near the
correct set point. The natural plant model in this circumstance would be that local
model, selected from a family of regime-specific, linear models, associated with
the present mode of operation. The modal-state is a pointer, and the intrasojourn
model can be written:

dxt =
∑

i

((Ai xt + Bi (ut + υ(φ̂t − ei ))) dt + Ci dwt)φi , (1.5)
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where {Ai , Bi ,Ci ; i ∈ S} are determined from (1.1) in precisely the way (1.3) was
in the unimodal (or unimorphic†) case.

Suppose the plant is in the i th mode (φt = ei ) and the modal estimate is a good
one (φ̂t ≈ ei ). The base-state dynamic equation is the i th selection from the family of
models: (Ai xt+Bi ut) dt+Ci dwt . The exogenous excitation is a Brownian motion
with intensity Rχ(i) = Ci WC ′

i . There is an atypical term in (1.5) that is connected
with failure to implement the proper feedforward excitation (−Biυφ̃tφi dt). When
the estimate of φt is good, this last term is negligible, and the intramodal dynamics
are LGM.

The intramodal representation is but a part of the model of plant evolution. When
the regime changes, many things can happen to the plant state. There will be no
attempt to be exhaustive in this list, but we will encounter situations in which
the plant state translates, rotates, and/or is scaled. More specifically, suppose {�t}
makes the transition ei �→ el at time t . Then {χt} may experience:

Translation: �χt = ρ(i, l); i �= l.
Rotation and/or scaling: �χt = M(i, l)χt−; i �= l,
where �χt = χt − χt−.

When the mode changes, the plant state may be transformed in a way that cre-
ates a path discontinuity. This abrupt change in plant state is an approximation
in most cases. But, if the interval over which a change takes place is small, a
discontinuous path model may provide a far simpler representation of the state
variation than would a continuous path model created from an intricate diffusion
process. To fill out the list of transformation matrices, let ρ(i, i) = 0, M(i, i) =
0; i ∈S. The indicator vector of the discontinuity event ei �→ el at time t can
be written as φi e′l�φt . The plant state discontinuity can be written explicitly
as

�χt =
∑
i,l

(M(i, l)χt− + ρ(i, l))φi e′l�φt .

Discontinuities in {χt} are reflected directly in {xt}, but there is an additional
source of base-state discontinuity. When the mode changes ei �→ el , the base-state
reference level changes from χi to χl . Even if the plant state were continuous, the
base-state would experience a discontinuity:

�xt = −χ�φt .

These intermodal transition conditions can be combined to yield the base-state

† We say a system may have one or several modes or, equivalently, forms. Hence a single-mode plant
is called unimodal (or unimorphic) to distinguish it from a polymodal (polymorphic) system.
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discontinuity model:

�xt =
∑
i,l

(M(i, l)xt− + (χi − χl)+ M(i, l)χi + ρ(i, l))φi e′l�φt . (1.6)

Now combine the intermodal discontinuity with the intramodal dynamics to
yield:

base-state model

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi +
∑
i,l

(M(i, l)xt

+ (χi − χl)+ M(i, l)χi + ρ(i, l))φi e′l�φt . (1.7)

Equation (1.7) is the fundamental model of time-continuous base-state evolution.
Its appearance is formidable. Be assured that while the various discontinuity and
set point conditions will appear in what follows, in no application will all occur
simultaneously! In many cases, (1.7) takes on a strikingly simpler form. It is ad-
vantageous to set apart some special instances of (1.7) because they are easier to
interpret.

LJS: The most often studied specialization of (1.7) is called a linear jump
system (LJS). In an LJS there is no regime-specific set point reference
(χ = 0,υ = 0), nor are there plant state discontinuities at modal tran-
sition [Mar90]. The LJS model is simply

dxt =
∑

i

((Ai xt + Bi ut) dt + Ci dwt)φi . (1.8)

Often the intensity of the Brownian excitation is constant across
regimes and there is no feedback control:

dxt =
∑

i

Ai xtφi dt + C dwt . (1.9)

We will find this simpler model to be useful in certain tracking applica-
tions.

JTS: In some applications, the plant state discontinuity has a particular
structure. There is neither rotation nor scaling. The plant state disconti-
nuity is a translation in the form of a difference between mode-specific
levels: ρ(i, l) = ρl − ρi . Array these levels as rows of an s × n matrix
ρ = [ρi ]. The base-state dynamic equation of a jump translating system
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(JTS) can be written

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi + (ρ ′ − χ) dφt .

(1.10)

If the plant state is a continuous process and there is no control, the
JTS-model becomes even simpler:

dxt =
∑

i

Ai xtφi dt − χ dφt + C dwt , (1.11)

where the model is shown with constant Brownian intensity.
In interpreting the results derived on the basis of (1.7), we should recognize the

approximations inherent in the model. If we ignore the drift identified with the
feedforward implementation, the intrasojourn base-state dynamics are LGM. This
model is easily justified in a region about the set point where higher order deviation
variables are negligible. Exactly this kind of linearization procedure is accepted
practice in applications involving unimodal plants, and during quiescent periods,
Equation (1.5) – the intermodal restriction of (1.7) – is reasonable. If the set point
changes, the magnitude of the base-state vector will increase abruptly. The state of
a well-regulated plant will move expeditiously toward the new set point. In (1.7) the
evolution model uses the dynamics of the successor regime. There are systems for
which this concatenation of local models would be inappropriate (e.g., an unstable
system moves away from the new set point). We will not pursue this issue further
and will accept (1.7) as an adequate for our purposes.

The comprehensive plant state (base, mode) is a combination of continuous
and discrete elements. The base-state moves within Rn , and though φt ∈ Rs , the
modal-state has a finite range space. The modal process is usually thought to be
exogenous: The path of {�t} is indifferent to {xt}. Because it modulates the base-
state motion, {�t} is not, however, independent of {xt}. With this heterogeneous
state space structure, such plants are called hybrid. Heterogeneity of various kinds
is becoming more common in applications, and the adjective “hybrid” is applied
quite broadly. Nevertheless, because it is so descriptive, we will use hybrid to refer
to plants and systems with this state space decomposition.

To complete the plant model, the temporal evolution of the modal-state must
be quantified. In much of what follows, {φt} will be represented by an Ft -Markov
process satisfying the stochastic differential equation:

modal-state model

dφt = Q′φt dt + dmt (1.12)
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with initial condition φ0. The S × S matrix Q is called the modal transition rate
matrix: If i �= j, P(φt+dt = e j |φt = ei ) = Qi j dt with Qii = −∑l �=i Qil . The
off-diagonal elements of the Q-matrix are nonnegative. The diagonal elements are
such as to make the row sums of Q equal zero. It is known that the mean sojourn
time in state φt = ei is −1/Qii , and if φt = ei , the probability that the next modal
transition will be ei �→ e j is −Qi j/Qii . Consequently, Q can be particularized
from observations of the modal process. The second term in (1.12) is a purely
discontinuous Ft -martingale increment: E[dmt |Ft ] = 0.

Equation (1.12) can be integrated into (1.7). Note that φi e′l dφt = (Qil dt +
dml)φi . So

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi +
∑
i,l

(M(i, l)xt

+ (χi − χl)+ M(i, l)χi + ρ(i, l))(Qil dt + dml)φi . (1.13)

Though not a particularly appealing relation, (1.13) can be made easier to interpret
if we collect some of the terms that have a common influence. Let

Ai = Ai +
∑

l

Qil M(i, l),

�(i, l) = χi − χl + M(i, l)χi + ρ(i, l), (1.14)

ρi · =
∑

l

�(i, l)Qil .

In these terms, the base-state model can be written

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi

+
∑
i,l

(M(i, l)xt +�(i, l))φi dml + ρ′φt dt. (1.15)

The equation of base-state dynamics has the general appearance of an LGM
model but it differs in important particulars. The state matrix, Ai , of {xt} is com-
posed of the intramodal component (Ai ) plus a component determined by both the
direction of the linear, intermodal discontinuity and its likelihood (

∑
l Qil M(i, l)).

The control matrix, Bi , is that of the intramodal model. The translational disconti-
nuity in the plant state is reflected in ρ′φt dt . There is a collection of terms in the
drift of {xt} not found in the classical models of control and estimation. The model
is highly nonlinear with the modal-state a multiplier throughout.

The increment in {xt} also contains exogenous forcing terms. One is a wideband
noise term (Ci dwt ) also found in LGM models. The other is neither linear nor
Gaussian. The plant state discontinuity term,

∑
i,l(M(i, l)xt + �(i, l))φi dml, is
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an increment of a purely discontinuous martingale. The coefficient, (M(i, l)xt +
�(i, l))φi , contains base- and modal-state products.

The specialized dynamics of an LJS are not changed when the modal process is
Markovian because the modal dynamics do not enter the base-state equation. The
base-state evolution of the JTS can be written:

dxt =
∑

i

((Ai xt + Bi (ut − υφt)+ (ρ ′ − χ)Q′ei ) dt

+ Ci dwt)φi + (ρ ′ − χ) dmt . (1.16)

Equation (1.16) contains the same types of excitation found in the more compre-
hensive model, (1.15), but the simpler structure of (1.16) will be reflected in the
estimation algorithm; compare (ρ ′ −χ) dmt with

∑
i,l(M(i, l)xt +�(i, l))φi dml .

In this book, we will present algorithms for generating (or approximating) {x̂t}
and {φ̂t}. The accuracy of the estimates depends upon the quality and kind of
sensors available in the application. A model for one kind of sensor is displayed in
(1.4). The measurement is time continuous, linear in plant state, and the noise is
additive and Gaussian. We will refer to (1.4) as the model of the plant state sensor
even though {yt} may be generated by a collection of individual devices arrayed
in a suite. For example, there may be radars aboard a set of geographically diverse
platforms (shipboard, land-based, and air-based) with all tracking the same target.
It is this aggregate that is called the plant state sensor. The noise in the observation
is determined by both the sensor and the geometry (e.g., range), after linearization
if necessary.

When the measurement frequency is too slow to justify using (1.4), the plant state
sensor outputs are more accurately viewed as a time-discrete sequence. Suppose
observations occur with intersample period T . A linear, time-discrete measurement
of the plant state at time t = kT is a direct analogue of (1.4):

plant state measurement: time-discrete

y[k] = Hχ [k]+ n[k], (1.17)

where {n[k]} is a Gaussian white noise process with covariance Rx (Rx > 0), inde-
pendent of the exogenous processes in (1.13). As is the case when the measurements
are time continuous, if {φt} is known, {y[k]} can be recast as a measurement of the
base-state uncontaminated by the mode: y[k]− Hχφ[k] = H x[k]+ n[k], and the
measurement residual is defined to be the difference between what the output is
and what it is predicted to be:

r [k] = y[k]− E[y[k] |G[k − 1]] = H x̃[k]− + n[k].
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In this case, r [k] is equal to the innovations increment �ν[k]. With imperfect
knowledge of {φ[k]}, the measurement residual (and the innovations increment)
is

r [k] = H x̃[k]− + Hχφ̃[k]− + n[k].

There is thus a mixing of base-state and modal-state errors in which the base-state
error, x̃[k]−, is conflated with a base-state equivalent error, χφ̃[k]−. Of course,
during long sojourns in a regime, the modal-state is probably identified rather well
(φ̃[k] ≈ 0), and the observation reverts to its orthodox form.

For LJS with known modal path, the Kalman filter generates the conditional
mean of the base-state for either time-continuous or time-discrete measurements.
Look at the time-continuous case, and denote the filtration generated by gt =
vec(yt , φt) by Gφ

t . The φ superscript is used to distinguish this filtration (perfect
modal knowledge) from those that follow (noisy modal measurements or none).
The Kalman filter generates two base-state moments: the conditional mean, x̂t =
E[xt | Gφ

t ], and the conditional error covariance, Pxx(t) = E[x̃t x̃ ′t | Gφ
t ]. If x0 is

N(x̂0, Pxx(0)), the estimate and the error are Gaussian. The Kalman filter generates
the Gφ

t -conditional distribution of the base-state (xt is N(x̂t , Pxx(t)) from which
other statistical properties of the estimate can be derived. One form of the Kalman
filter is [BW92, Figure 7.1]

Kalman filter: time-continuous state, time-continuous measurement

dx̂t =
∑

i

Ai x̂tφi dt + γx dνt (1.18)

subject to

d

dt
Pxx =

∑
i

(Ai Pxx + Pxx A′i + Rχ(i))φi − γx Rxγ
′
x . (1.19)

The factor γx = Pxx H ′R−1
x is the Kalman gain and

dνt = dyt − H(χφ + x̂t) dt

is a Gφ
t -innovation increment.

The Kalman filter is familiar to engineers, and comprehensive studies of its
properties are available. There are features of the Kalman filter that warrant com-
ment. The base-state estimate prescribes concurrent extrapolation (

∑
i Ai x̂tφi dt)

and correction (γx dνt). The direction of extrapolation is determined by the current
A-matrix (selected by φt ). Correction is achieved by weighting the innovations
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increment with γx . The Kalman gain, γx = Pxx H ′R−1
x , increases with observation

quality (H ) and decreases with sensor noise intensity (Rx ). The gain also increases
as the estimation uncertainty increases. (The base-state error covariance, Pxx , is
sometimes called the uncertainty matrix.) An increase in Pxx makes the Kalman
filter more data-driven whereas a decrease in Pxx makes the Kalman filter more
model-driven.

Modal dependence enters the Kalman filter in a direct manner. The {x̂t} and {Pxx}
dynamics change in concert with {φt}. Although {φt} is a random process, {Pxx}
is random only because the coefficients in (1.19) are random: If the modal process
were known a priori, Pxx could be precomputed. In any case, the error covariance
is independent of the base-state observation {yt}.

Equation (1.18) has an intuitively appealing form. Note that

E [dxt |Gφ
t ] =

∑
i

Ai x̂tφi dt

and that the innovation process is a Gφ
t -martingale. The equation of evolution of

the base-state estimate is

dx̂t = E[dxt |Gφ
t ]+ dµt ,

where µt is a Gφ
t -martingale [Kri84]. The increment in the mean is the mean of the

increment plus a correction that is a martingale increment. For the system under
study, all Gφ

t -martingales are integrals with respect to the innovations process: All
Gφ

t -martingale increments areGφ
t -predictable multiples of the innovation increment.

The last term above must be of the form of a gain multiplying dνt [Ell82].
In applications in which the measurement is time discrete, the Kalman filter can

be deduced formally from (1.18) and (1.19). Begin at time kT with the filter in
state (x̂[k], Pxx [k]). For the discrete-time case, it is convenient to distinguish the
pre-update version of the base-state estimate from the post-update estimate. Denote
the extrapolated state vector estimate at time (k + 1)T by x̂[k + 1]− = x̂(k+1)T− ,
and similarly denote the covariance by Pxx [k+1]− = Pxx((k+1)T−). Integration
of the measurement at time (k + 1)T gives rise to a correction to the pre-update
estimate: �x̂[k + 1] = x̂[k + 1] − x̂[k + 1]− and similarly �Pxx [k + 1] = Pxx

[k + 1]− Pxx [k + 1]−. The filter residual r [k + 1] = y[k + 1]− H(χφ[k + 1]−
x̂[k + 1]−) is the innovations increment. The residual process is a white Gaussian
process with covariance Ryy[k] (with inverse Dyy[k] = Syy[k]′Syy[k]):

Ryy = E[r [k] r [k]′ |Gφ[k − 1]] = H Pxx [k]−H ′ + Rx = Dyy[k]−1.

The discrete form of the Gφ[k]-filter is given in [BW92, Figure 5.9].
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Kalman filter: time-continuous state; time-discrete measurements

Between observations:

d

dt
x̂t =

∑
i

Ai x̂tφi , (1.20)

d

dt
Pxx =

∑
i

(Ai Pxx + Pxx A′i + Rχ(i))φi . (1.21)

At an observation:

�x̂[k + 1] = γxr [k + 1], (1.22)

�Pxx [k + 1] = −γx Ryy[k + 1]γ ′x , (1.23)

where γx = Pxx [k+1]−H ′Dyy[k+1]. Equations (1.20)–(1.23) follow from (1.18)
and (1.19) by making the replacements

(i) in extrapolation, R−1
x → 0,

(ii) in correction, E[dνt dν ′t |Gφ
t ]/dt → Ryy[k].

Like the continuous Kalman filter, its discrete sibling is a predictor–corrector,
but the prediction and correction are not concurrent. Correction takes place at the
observation times with a difference in the gain: For time-discrete measurements,
γx = Pxx H ′R−1

yy ; for time-continuous measurements, γx = Pxx H ′R−1
yy /dt, where

R−1
yy /dt (= E[dνt dν ′t | Gφ

t ]/dt) is the intensity of the residual process. As in the
time-continuous case, the observation gain increases with improved sensor quality.
The time-discrete residual process is a white, Gaussian process: rk ∈ N(0, Ryy[k]).
If the residual is scaled by Syy[k], a unit Gaussian white sequence is obtained:
Syy[k] r [k] ∈ N(0, I ).

The Kalman filter is a complete solution to the estimation problem as posed,
but most applications do not fall neatly within the modeling paradigm. Nonlin-
earities and discontinuities neglected in the model cause the performance of the
Kalman filter to degrade. The influence of mismodeling is seen frequently in sim-
ulation exercises where the size of the estimation error can be contrasted with the
computed error covariance. In an actual system, the true error is not known. But
the residuals can be measured, and if {Syy[k]r [k]} is not a unit white noise pro-
cess, the model of the plant and sensor may need to be refined. When {r [k] r [k]′}
consistently exceeds Ryy[k], the filter is said to exhibit excess error; if Pxx is
small, the filter residual may exceed the standard deviation of the noise in a single
measurement.
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1.2 A Tracking Example

To illustrate some of the issues that arise in hybrid estimation within the context of
a concrete example, consider a tracking problem in which we wish to determine the
position and velocity of an evasive aircraft moving in the X–Y plane. (The altitude
is essentially constant.) Targets with limited thrust control maneuver by jinking:
The turn rate tends to be nearly constant over intervals with sudden changes at
unpredictable times. Suppose the aircraft is detected at a range of 36 km (t = 0)
traveling at a speed of 300 m/s. The aircraft coasts (nearly constant velocity flight)
for three seconds (t ∈ [0, 3)), makes a 7 g turn to the right for six seconds (t ∈
[3, 9)), coasts for two seconds (t ∈ [9, 11)), makes a 7 g turn to the left for five
seconds (t ∈ [11, 16)), and then returns to coast. Increased drag during a turn causes
the aircraft to slow to 60% of the speed that it had entering the turn with a 40%
increase in speed when a turn transitions to coast. During an interval of constant
turn rate (including coast), the speed is fairly constant.

A rudimentary motion model for the aircraft between changes in turn mode is

d


X
Y
Vx

Vy

 =


0 0 1 0
0 0 0 1
0 0 0 −�
0 0 � 0




X
Y
Vx

Vy

 dt +


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
. (1.24)

In this tracking problem, there is no plant state reference point; that is, the plant
dynamics are linear over R4 (χ = 0), and the plant state is the base-state. Moreover,
there is no endogenous actuating signal; that is, the tracker has no control over target
motion (υt ≡ 0). The base-state consists of {X, Y }, the position coordinates, and
{Vx , Vy}, the associated velocities. The target is subject to two types of acceleration:
(i) a wide band, omnidirectional acceleration described by the Brownian motion
{wx , wy}with intensity W and (ii) a maneuver acceleration represented by the turn
rate process {�t}. The speed is slowly varying when the turn rate is constant, and
so the omnidirectional acceleration is small: Let Ci = e2⊗ I2 for all i and W = I2.
The intensity of the acceleration is about 0.1 g.

The jinking behavior can be captured by partitioning the range of possible turn
rates into three levels:

�t ∈ {a1 = 0.2r/s, φt = e1; a2 = 0r/s, φt = e2; a3 = −0.2r/s, φt = e3}.
The turn rate is given by �t = a′φt . A change in motion mode causes a change in
speed, but no rotation:

• At the beginning or end of a turn, the position process is continuous:
[Xt+, Yt+] = [Xt−, Yt−].

• At the beginning of a turn (� �→ a1 or � �→ a3) the target slows by 40%:
[Vx(t+), Vy(t+)] = 0.6[Vx(t−), Vy(t−)].
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• At the end of a turn (� �→ e2), the target speed increases by 40%, but not
enough to attain the pre-turn velocity: [Vx(t+), Vy(t+)] = 1.4 [Vx(t−),
Vy(t−)]

In this example, a turn-to-turn transition is not allowed. The intraregime model of
the aircraft can be written as the stochastic differential equation:

dxt =
∑

i

Ai xtφi dt + dwt , (1.25)

where

Ai =


0 0 1 0
0 0 0 1
0 0 0 −ai

0 0 ai 0

 .
At the origin of the coordinate system, (0, 0), there is a sensor. A radar measures

the position of the target every second with Gaussian errors of 40 m in range and
1.75 mr in bearing (approximately 63 m at 35 km). This measurement is not linear
in the coordinate system selected for the motion model: y[k] = r(x[k]) + n[k]
instead of y[k] = H x[k]+ n[k]. The measurement relation can be linearized, not
about the set point, but about the computed state estimate, x̂t , itself. A replacement
for the measurement residual is r [k] = y[k] − r(x̂[k]−). The covariance update
is computed using the χ -gradient of r evaluated at x̂[k] in place of H in (1.22)
and (1.23). This ancillary linearization is commonly done when the sensor nonlin-
earities are smooth and the estimation errors reasonably small, and it leads to an
instance of the extended Kalman filter (EKF) [GA93, Table 5.4]. Similar output
linearization will be performed in what follows wherever required without further
comment.

The most rudimentary approach to the tracking problem would be to ignore
the turn process and design an EKF based upon the specification of radar quality
given above. Suppose x̂0 = x0 and the initial covariance is taken to be diagonal
with standard deviation in position (100 m) and velocity (20 m/s): The tracker is
initialized at the true state of the aircraft and the initial uncertainty is larger than
the single-measurement sensor error. The Brownian disturbances on the path are
small: Set W = 1. Figure 1.1 shows a sample path of the nominal EKF as a feather
plot referenced to a target path generated with W = 0. (A feather plot connects
the estimates of location after a measurement to the true location. A point is shown
every 0.1 s for clarity. The speed changes are not visible on the target path.) With
the advantageous initialization, EKF(W=1) begins well. The target model ignores
turns and none occur at first.
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Figure 1.1. The path of a target with estimates from EKF(W=1).

When the target turns and slows, the performance ofEKF(W=1) degrades. As the
target turns to the right, EKF(W=1) fails to follow and extrapolates between radar
measurements in the direction of the initial velocity. The position error is corrected
in part when a radar measurement is received, but the gain is too small to bring
x̂t back to xt . The velocity correction is also far too small. With no direct velocity
measurement, EKF(W=1) misinterprets {y[k]}. This creates tracking errors far in
excess of the raw radar noise (about 60 m). It is not until the reverse turn has
begun that EKF(W=1) identifies the velocity, but this is an artifact of the path.
The error going into the final coast is quite large and the velocity estimate is
abysmal.

The EKF, in contrast to less structured estimators (e.g., the α − β tracker),
not only generates an estimate of the base-state, but it also provides an assess-
ment of its own performance. The upper left submatrix Pxx(1 : 2, 1 : 2) gives
the error covariance in position. A one-σ region of target location is found by
centering an ellipse determined by Pxx(1 : 2, 1 : 2) about x̂t . In some adaptive es-
timators, the radar pulse shape (and the signal-to-noise ratio (SNR) of the sensor)
and the tracking window are dependent on the size, shape, and location of this error
ellipse.

Figure 1.2 displays the target path along with the one-σ error ellipses (shown
every 0.2 s for clarity) centered at the location estimates. The ellipses are near
circles in this case because of the symmetry in the measurement. On the first coast,
when the dynamic hypotheses of the EKF match the motion, tracking uncertainty
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Figure 1.2. The path of a target with error ellipses generated by EKF(W=1).

is reduced (the ellipses shrink) with each radar measurement. The true path lies
within or next to the envelope of the one-σ error circles. When the target turns to
the right and slows, EKF(W=1) fails to react. Although EKF(W=1) tacks away
from the true path, the error ellipses evidence no sensitivity to the growth in the size
of the measurement residuals. The residuals may exceed 10 σ , a near impossibility
if the errors were truly Gaussian. After completing the first turn, the target path lies
several standard deviations away from {x̂t} except when the target turns back into
the estimate: The estimates are bad but the filter fails to acknowledge just how bad
they are. A Gaussian density has thin tails, and the persistent presence of excess
error as shown in Figure 1.1 is highly unlikely. The EKF’s sanguine attitude would
lead to loss-of-lock if the radar energy were focused in a three-σ window about
{x̂t}.

With the approximations we have made in the design of this EKF, it is not sur-
prising that it may need to be adjusted or tuned for this application. The nominal
EKF is too sluggish to follow an agile target. In principle, any of the coefficients in
EKF(W=1) could be changed to make it more responsive. However, the aircraft dy-
namics and the observation equation are constrained by the physics of the path (e.g.,
the {Ai , i ∈ S}) or the geometry of the sensors (e.g., H ). Tuning in the EKF usually
concentrates on the intensities of the exogenous disturbances: W = E[dwt dw′

t ]/dt
(the plant noise) or Rx = E[nkn′k] (the sensor noise). In fact, the focus is more
commonly on the former because there are stronger empirical restrictions on the
latter.
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When W is increased to account for various modeling inaccuracies, pseudonoise
is said to be added to the plant. For example, the motion model given in (1.24) is
a low dimension representation of a very complicated object. An engineer could
argue that the neglect of dynamic modes in the model causes the computed value
of Pxx to be smaller than the true error covariance. For example, when the turns are
ignored, the primary plant excitation is disregarded. If W is increased, the computed
{Pxx} is made larger. This increases the filter gain and the responsiveness of the
EKF as well. While pseudonoise augmentation has proved useful in applications,
the higher gains do magnify the sensor noise. Additionally, additive white noise
does not preserve the path geometry associated with the modes that are ignored,
and this mismodeling may lead to performance that is far from optimal.

Let us try to improve the response of EKF(W=1) by pseudonoise augmentation.
To rationalize the level of pseudonoise, recognize that the target accelerations also
include the turns. Set W = 100. The standard deviation of �Vx over one second
is 10 m/s, which is equivalent to a 1 g constant acceleration. Over six seconds or
so this would be roughly the white-noise equivalent of the turn process involving
a 7 g turn over six seconds and intervening coasts. Of course, this equivalence is
crude: The Brownian motion is continuous whereas the turn rate process is not;
the Brownian motion acts throughout the tracking interval, whereas the turn rate
changes at isolated times; the Brownian motion is omnidirectional, whereas the
turn places specific geometric constraints on the target path.

Figure 1.3 shows the feather plot of a sample of an EKF with this pseudonoise
augmentation. The effect of pseudonoise is beneficial for the most part. After the first
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Figure 1.3. The feather plot for EKF(W=100).
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Figure 1.4. The ellipse plot for EKF(W=100).

turn begins, the estimation accuracy is improved significantly over that displayed in
Figure 1.1. Velocity estimates are also improved during intrasojourn intervals. As
expected, the increased gain makes the estimate more responsive to the peculiarities
of the target path.

Unfortunately, pseudonoise carries with it a concomitant shortcoming. The one-σ
error ellipses generated by EKF(W=100) are shown in Figure 1.4. The envelope of
the ellipses does contain the target path (in almost all cases), but this is achieved by
making the the axes of the ellipses overly long. The ellipses appear to be reasonable
in size and location after an update in that, with few exceptions, the target path lies
in or near the ellipse. However, they grow excessively between radar measurements.
The predictive capability of EKF(W=100) is not good: This EKF does not sharply
delineate the region in which the aircraft is likely to be. If the SNR of the radar were
made inversely proportional to the size of the error ellipse, even position tracking
would degrade significantly.

Since W is a tuning parameter, an engineer might ignore our superficial ratio-
nalization and simply select W to yield the best performance based upon trade-offs
gleaned from the sample behavior. Figure1.5 shows the mean radial estimation error
for three filters: EKF(W=1); EKF(W=10); EKF(W=100). This figure is formed
from the sample average of 50 independent experiments in which each filter saw
the same observations and the aircraft flew the path shown in Figure 1.1 (W =
0). We can extract three important subintervals from this experiment: t ∈ [0, 3],
initialization and opening coast; t ∈ [4, 9], slowing and turning; t ∈ [18, 20],
return to coast. With the advantageous initialization, the EKF with the smallest
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Figure 1.5. Mean radial estimation error for three EKFs and a nonlinear estimator.

gain is best on t ∈ [0, 3]. Let us use “≺” to indicate preference: On t ∈ [0, 3],
EKF(W=1)≺EKF(W=10)≺EKF(W=100). In the first turn (t ∈ [4, 9]) the prefer-
ences are reversed with preference ordering in accord with the gain: EKF(W=100)

≺ EKF(W=10) ≺ EKF(W=100). The radial error in the interval after t = 10 is
small because the target is turning toward the estimated position.

The interval [18, 20] is in the interior of a coast, and it would be expected that
the initial preference ordering would again prevail since the model upon which
EKF(W=1) is based is most representative of the target path for t ∈ [16, 20]. Ac-
tually the ordering is contrary: EKF(W=10)≺ EKF(W=100)≺ EKF(W=1). The
reason behind this anomaly is related to the way in which the Kalman gain in-
fluences memory in the estimator. After the second turn ends, both EKF(W=10)

and EKF(W=100) return quickly to their premaneuver error condition; they have
a short memory. Alternatively, EKF(W=1) is disoriented at the end of the turn,
particularly with regards to velocity – Figure 1.1 shows EKF(W=1) tacking in
the positive Y direction when the true Y velocity is clearly negative. None of
the EKFs have a velocity measurement, and when the accelerations in the model
are small, motion aberrations are seen as coming from velocity errors. During
a maneuver, there is an accumulation of velocity errors that must be dissipated
before the EKF can return to proper operation. When the innovations gain is
small, as it is in EKF(W=1), this takes considerable time. The deviant ordering
shown in the figure would eventually be corrected, but the time required could be
significant.
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Figure 1.6. The path of the target along with estimates from a nonlinear filter.

This example illustrates the trade-offs that arise in hybrid estimation. Algorithms
with high gains magnify the sensor noise but are responsive to modal changes; algo-
rithms with low gains average out the sensor noise but are slow to adapt themselves
to changing modal conditions. More attractive would be a response like that shown
in Figure 1.6. The same target path leads to generally smaller radial errors than any
of the EKFs (as shown in Figure 1.5) with error ellipses more faithful in shape and
smaller in size. The ellipses are more variable, growing on that part of the trajec-
tory where the uncertainty is greatest and with major axis closer to the direction
of greatest uncertainty (along the estimated velocity vector). The development of
algorithms that provide this balance between inter- and intrasojourn performance
will be the topic of what follows.

1.3 Infinite-Dimensional Algorithms

The previous example illustrates some of the difficulties associated with hybrid
estimation. The modal process modulates the base-state dynamics. If the modal-
state is measured, the estimation problem can be solved using classical methods.
Lacking measurement of {φt}, the problem is intractable. Because the composite
estimation problem arises in so many applications, engineers have been forced to
create algorithms for hybrid systems using the analytical tools available. Thus the
EKF-tracker used the radar measurements, {y[k]}, to obtain a Yt -estimate of the
kinematic state while ignoring the turn state.
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There are alternatives to the EKF. The exact approach would be to first determine
the Yt -conditional joint probability distribution of the zygostate. From this, the
Yt -conditional expectations can be computed in the customary way. To illustrate,
consider the case in which the observation is linear and time continuous, and the
plant is a LJS (see (1.8)). Suppose the plant is such that the base-state distribution has
aYt -density for every modal condition: pi

t (z) dz = P(xt ∈ [z, z+dz], φt = ei |Yt).
A vector of nonnegative functions qt(z) = [qi

t (z)] is called an unnormalized density
if the {pi

t (z); i ∈ S} can be found from {qi
t (z); i ∈ S} by rescaling:

pi
t (z) = qi

t (z)

/∑
i

∫
�

qi
t (u) du. (1.26)

Division in (1.26) acts to convert the nonnegative but unnormalized densities into
a joint probability function. It is often easier to work with unnormalized densities
than their normalized counterparts because their equations of evolution are simpler.
Let {L(i); i ∈ S} be a set of differential operators:

L(i) = 1

2

∑
k, j

(Rχ(i)) jk(∂
2/∂zk∂z j )−

∑
k

(∂/∂zk)(Ai z + Bi u)k . (1.27)

It is shown in [LRE86] that qt(z) satisfies the stochastic partial differential equation:

dqt(z) = (L∗qt(z)+ Q′qt(z)) dt + (dy′t H z)qt(z). (1.28)

Equation (1.28) is intimidating. It consists of a set of nonlinear, second-order,
stochastic partial differential equations in which each of the S unnormalized density
functions (the components of qt(z)) have n spatial variables. All S equations must
be solved simultaneously because of the coupling among the densities in Q.

To utilize (1.28) or its analogues, restrictions and approximations are necessary.
For example, if the modal process has a “direction of evolution” (e.g., when in
regime ei , {φt} can only transition to an e j for which j < i), the solution becomes
more manageable (see [LRE86, Theorem 3.1] and [LBV91]). Look first at all modes
that are absorbing: the set of ei for which Qii = 0. The solution for {qi

t (z)} for these
modes can be done in parallel and each such subproblem has a Kalman filter–like
solution. Look next at those regimes that transition to an absorbing state. They
are linked to the {qi

t (z)} for the absorbing states in (1.28), but these densities are
known from the previous calculation. The solution to (1.28) for the single-transition
regimes is not Gaussian, but only one jump time need be considered. This process
can be continued backward, but the complexity of the calculation is such as to
preclude real-time implementation.
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1.4 Multiple Model Algorithms

Implementable algorithms for calculating the unnormalized conditional densities
of the zygostate are seen most often in the context of time-discrete plant models.
Time-discrete models arise in applications in which the engineer is only concerned
with the behavior of the plant state at a set of sample times. The sample times do not
have to be evenly spaced nor do they have to be simultaneous with the observations.
It is, however, simpler to look at all of the system variables on an evenly spaced
time grid contemporaneous with the output samples. The zygostate process for a
time-discrete plant is a random sequence in which (x[k], φ[k]) is identified with the
state of the time-continuous plant sampled every T seconds; (xkT , φkT ). In contrast
with the time-continuous plant, the modal transitions will occur at sample times and
are therefore coincident with an observation. Let {F[k]} be the filtration generated
by {x[k], y[k], φ[k]}. The time-discrete modal process will be represented by an
F[k]-Markov process:

modal-state model: time-discrete

φ[k] = �φ[k − 1]+ m[k], (1.29)

where {m[k]} is a time-discrete, F[k]-martingale difference:

E[m[k + 1] |F[k]] = 0,

and �i j = P(φ[k] = ei |φ[k − 1] = e j ) is the modal transition matrix (compare
(1.12)).

In the time-discrete plant, it is assumed that there are no modal transitions interior
to an intrasample interval. The time-discrete, base-state model can be deduced by
integrating (1.5) over a single period. In the examples of time-discrete systems
that follow, issues of feedforward control will not be addressed (υ = 0), and the
regulating signal will be assumed to be constant between samples:

x[k] =
∑

i

(�i (T, 0)x[k − 1]

+
∫ kT

(k−1)T
�i (kT, s)(Bi u[k − 1] ds + Ci dws))e′iφ[k − 1], (1.30)

where �i is the transition matrix associated with the i th mode:

�i (t, s) = exp(Ai (t − s)).

We will assume that for every i ∈ S, {(Ai ,Ci W 1/2)} is controllable. Regime-specific
controllability assures that exogenous excitation is a Gaussian white sequence with
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positive covariance:∫ kT

(k−1)T
�i (kT, s)Ci dws ∈ N(0, Rχ(i)); Rχ(i) > 0.

Let us rewrite (1.30) using the following replacements:

�i (T, 0)→ Ai ,∫ T

0
�i (T, s)Bi ds → Bi ,∫ T

0
�i (T, s)Ci W

1/2 → Ci .

Then Ci is a square root of Rχ(i): C ′
i Ci = Rχ(i). The time-discrete base-state

model uses a parameter set identical to that of (1.5). Despite the labeling, the values
of the coefficient matrices are not the same for the time-continuous and the time-
discrete base-state models. Matching the labels permits the identification of similar
operations across model categories. Care must be exercised in interpreting specific
algorithms because a statement about Ai , for example, in a time-discrete application
may not be true about Ai in a time-continuous application. With this caveat, (1.30)
can be written:

x[k] =
∑

i

(Ai x[k − 1]+ Bi u[k − 1]+ Ciw[k])e′iφ[k − 1], (1.31)

where {w[k]} is a Gaussian white sequence of unit covariance: w[k] ∈ N(0, I ).
The complete time-discrete model is found by integrating the modal transi-

tion conditions into (1.31). The applications to be considered here do not involve
the full range of discontinuities given in (1.6). Suppose only that the plant state
set point changes with regime. The equation of base-state evolution can then be
written:

base-state model: time-discrete

x[k] =
∑

i

(Ai x[k − 1]+ Bi u[k − 1]

+Ciw[k])e′iφ[k − 1]− χ�φ[k − 1], (1.32)

where �φ[k − 1] = φ[k]−φ[k − 1]. Because they derive from a time-continuous,
regime-controllable plant, the coefficient matrices in (1.32) have special properties
that will prove useful (e.g., all of the matrices Ai and Ci ; i ∈ S are nonsingular).
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TheY[k]-estimation problem where the {Bi ; i ∈ S} andχ are zero has been stud-
ied by several investigators. Let us see how this special case has been approached
for it will give us insight into the more general problem. The reduced base-state (or
plant) dynamics are

x[k] =
∑

i

(Ai x[k − 1]+ Ciw[k])e′iφ[k − 1]. (1.33)

Suppose first that {φ[k]} is known, and denote the filtration generated by g[k] =
vec(y[k], φ[k − 1]) by Gφ[k]. If the initial condition on (1.33) is N(x̂t [0], Pxx [0]),
then the Gφ[k]-mean of {x[k]} is generated by the time-discrete Kalman Filter (see
[GA93, Table 4.3] and (1.20)–(1.23)):

Kalman filter: time-discrete state, time-discrete measurement

Extrapolation:

x̂[k + 1]− =
∑

i

Ai x̂[k]e′iφ[k], (1.34)

Pxx [k + 1]− =
∑

i

(Ai Pxx [k]A′i + Rχ(i))e′iφ[k]. (1.35)

Update:

�x̂[k + 1] = γxr [k + 1], (1.36)

�Pxx [k + 1] = −γx Ryy[k + 1]γ ′x . (1.37)

The innovations process {ν[k]} (with increments r [k] = y[k] − H x̂[k]−) is a
time-discrete Gφ[k]-martingale (E[r [k]|Gφ[k]] = 0). As was the case of a time-
continuous plant with discrete measurements, the covariance of r [k] is given by
Ryy[k] = H Pxx [k]−H ′ + Rx with inverse Dyy[k]. The gain γx = Pxx [k +
1]−H ′Dyy[k+ 1] is identical to that for the time-continuous plant with time-
discrete observations. TheGφ[k]-conditional distribution of x[k] is N(x̂[k], Pxx [k]).
If {φ[k]} is a deterministic sequence, {x̂[k]} is a Gaussian process and {Pxx [k]} can
be precomputed. If {φ[k]} is a random process, {x̂[k]} is only conditionally Gaussian
and {Pxx [k]} is random.

The observation, {y[k]}, appears only in the base-state update; the error co-
variance is independent of {y[k]}. To make clearer the dependence of the base-
state estimate on the model process, denote the realized modal sequence over
the interval [iT, . . . , jT ] by φ(i : j). We could write the Gφ[k]-mean of {x[k]}
and the Gφ[k]-error covariance more descriptively as {x̂([k];φ[0 : k − 1])} and
{Pxx([k];φ[0 : k − 1])}.
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Let us make this problem more realistic and assume that {φ[k]} is not known.
With only {y[k]} as the observation, the relevant filtration is {Y[k]}. It is true that

E[x[k] |Y[k]] = E[E[x[k] |Gφ[k]] |Y[k]]

= E[E[x̂([k];φ[0 : k − 1])] |Y[k]].

The Y[k]-mean of the base-state is found by taking the elementary estimates
based upon Gφ[k] and averaging them over the set of possible modal paths. This
is a conceptually attractive representation of the base-state estimator since each
x̂([k];φ[0 : k − 1]) is found from a finite-dimensional recursion.

The actual calculation of {x̂[k]} would proceed as follows. Order the allowable
modal sequences. There are no more than Sk of them on [0, k − 1], and let φ([κ];
[0 : k − 1]) be the κth such sequence. Let φ̂([κ]; [0 : k − 1]) = P[φ[0 : k − 1] =
φ([κ]; [0 : k − 1]) |Y[k]]. Then the Y[k]-mean of the base-state is simply

x̂[k] =
∑
κ

x̂([κ];φ([κ]; [0 : k − 1]))φ̂([κ]; [0 : k − 1]). (1.38)

This multiple model (MM) base-state estimator is composed of a finite number of
Kalman filters, and the evaluation of φ̂([κ]; [0 : k − 1]) is a separate estimation
problem. From {φ̂([κ]; [0 : k − 1]); κ ∈ Sk}, φ̂[k − 1] can be found by summing
across sequences with the same (k − 1)th element.

Equation (1.38) is an exact solution to the time-discrete LJS filtering problem, but
there are insurmountable difficulties associated with its implementation. Observe
that x̂([k];φ([κ]; [0 : k − 1])) is not known as an explicit Gφ

t -adapted function.
Each elementary estimate is given implicitly by a path-individuated recursion. If
each modal-state can transition to any other modal-state in one sample time, there
are Sk such recursions, and there is simply no way to accommodate this geometric
growth. Also, there exists no tractable algorithm for finding the Y[k]-probability
of a modal path. Not only do the number of elements in {φ̂([κ]; [0 : k − 1])} grow
geometrically, but their computation involves sophisticated data smoothing.

Failing to find a solution that is both exact and implementable, we must turn to an
approximation. The simplest way to reduce the algorithmic complexity would be to
ignore the modal transitions (set � = I). Instead of Sk possible modal paths there
are now S of them: φ([κ]; [0 : k − 1]) ∈ {1′k ⊗ e1, . . . ,1′k ⊗ es}. There are only
S regime-specific subfilters required to generate {x̂([k]; 1′k ⊗ ei ) = x̂ i [k]; i ∈ S}.
Equation (1.38) reduces to [May82a, Section 10.8]:

multiple model filter: path-length-one

x̂[k] =
∑

i

x̂ i [k]e′i φ̂[k − 1]. (1.39)
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Equation (1.39) is called the path-length-one multiple model (PL1-MM) filter.
The number of subfilters is fixed. The path probabilities required in (1.38) re-
duce to the modal probabilities, e′i φ̂[k − 1] = P[φ[k − 1] = ei | G[k]], in
(1.39). The G[k]-conditional distribution of the zygostate is the S-vector pt =
[e′i φ̂[k − 1]N(x̂ i

k, Pi
xx [k])]. In implementation, the residuals generated by the indi-

vidual subfilters are used to compute the modal probabilities [May82a, Equation
(10-107)]. This MM filter works well when the regime process is invariant. Of more
interest here is the fact that the MM filter has been used with success in applications
in which {φ[k]} is not a constant process. Equation (1.39) is only an approximation
in this circumstance. However, if the SNR is high, {φ̂[k]} follows {φ[k]}with small
delay and selects the “correct” subfilter in (1.39).

The path-length-one MM algorithm may require adjustment when the modes
communicate. Because the PL1-MM filter is framed on the basis of regime in-
variance, it can generate inaccurate estimates after a modal transition. Suppose
that over an interval preceding t = NT, {φ[k]}≡ e j . If the SNR ratio is high,
the modal estimate will be good when t = (N − 1)T : The modal estimator will
select the correct regime (φ̂[N − 2] ≈ e j ), and the error covariance will be small
(Pφφ[N − 2] = E[φ̃[N − 2]φ̃[N − 2]′ | Y[N − 1]] ≈ 0). If Rχ(i) is small for
all i ∈ S, the computed error covariance in each subfilter will be small as will the
subfilter gains. If now {φ[k]} makes the transition e j → el at t = (N − 1)T , the
proper subfilter is suddenly the lth. The lth subfilter, unmatched to the observations
prior to t = NT, may have accumulated a significant amount of error. It was noted
by Maybeck that the “mismatched filter estimates can drift significantly from the
true state values. When the (regime) changes and one of these ‘mismatched’ filters
becomes the ‘correct’ one, a very long transient is required to achieve proper iden-
tification” [May82a, p. 135]. The large residuals in the lth subfilter were of little
consequence when e′l φ̂[N − 2] was small, but as {φ̂[k]} moves toward el , the drift
error in the lth filter will manifest itself in {x̂[k]}.

To reduce these transfer transients, two alterations are made in the implemen-
tation of (1.39). All components of {φ̂[k]} are kept above a threshold to shorten
the delay in identifying the new regime. To mitigate the influence of filter drift,
pseudonoise is added to each of the filters.

The earlier tracking example illustrates some of the untoward effects created
by regime transfers. The MM formalism was not used in the filter design, but
the nominal estimator, EKF(W=1), is the EKF identified with the coast mode.
On the time set t ∈ [0, 3) ∪ [9, 11) ∪ [16, 20], EKF(W=1) would be the proper
subfilter for the PL1-MM algorithm to select. Compare, therefore, the response of
EKF(W=1) on the interval after detection with that on an interval in final coast
(e.g., around t = 18 s). The initialization is uncomplicated: The error covariance
is reduced quickly from its initial value, and the estimation error stays well within



28 Hybrid Estimation

the one-σ error envelope. Thus, EKF(W=1) provides both an accurate estimate of
position and a valid measure of tracking uncertainty. This interval shows the proper
functioning of a MM filter.

On the final coast, the performance of EKF(W=1) is poor even though EKF(W

=1) is again the correct subfilter. This difference is attributable to the large er-
rors at t = 16 s, particularly in velocity. Furthermore, the computed error covari-
ance EKF(W=1) is far too small, and the subfilter is slow to correct the tracking
error.

Generalizations of the MM approach are useful when the plant has a short mem-
ory for modal changes. In this circumstance, the conditioning on the full modal
path could be replaced with conditioning on a shorter segment. For example, order
the modal paths of length s and let

φ̂([κ]; [k − s : k − 1]) ≈ P[φ(k − s : k − 1)

= φ([κ]; 0 : s − 1), (the κth such sequence)|Y[k]].

Now the number of models that must be considered for a path-length-s MM filter
is bounded. Unfortunately, the number of required subfilters still grows so rapidly
(of order Ss) that only short spans have ever been proposed (perhaps two). Further,
because the modal paths are truncated, subfilter (re)initialization must be handled
in an ad hoc manner.

In many applications, constraints on the computational complexity of the estima-
tion algorithm severely limit the number of elemental filters that can be maintained.
The PL1-MM filter utilizes only S subfilters, but it suffers from carryover errors at
modal transitions. Without pseudonoise, the gains of the subfilters are too small,
and transition transients take a long time to decay. An algorithm that uses S sub-
filters but achieves performance closer to that attained with a path-length-two MM
filter is the interacting-multiple-model filter (IMM).

Suppose the observation cycle at time t = kT is complete. The observation
reflects the modal path up to time t = (k−1)T . Write φ̂[k−1] = E [φ[k−1] |Y[k]].
Suppose the Y[k]-conditional probability density of the zygostate is pt = [e′i φ̂[k−
1]N(x̂ i [k], Pi

xx [k])]. The Y[k]-density of x[k] is
∑

i e′i φ̂[k − 1]N(x̂ i [k], Pi
xx [k]).

This is an instance of a Gaussian wavelet distribution in which the individual
wavelets are basis functions, translated and shaped by the mean (x̂ i [k]) and the
covariance (Pi

xx [k]), and weighted by the coefficients e′i φ̂[k − 1]. This wavelet
distribution would be formally interpreted to mean that the conditional density of
x[k] given both Y[k] and φ[k − 1] = ei is N(x̂ i

k, Pi
xx [k]).

The IMM propagates the conditional distribution forward to time t = (k +
1)T . As does the PL1-MM filter, the IMM employs S subfilters. Initialize the
individual subfilters at t = kT with states {x̂ i [k], Pi

xx [k]; i ∈ S}. For each subfilter,
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the equations for extrapolation, update, residual, and gain are those of the associated
Kalman filter.

To present the IMM most concisely, let us rewrite the subfilter algorithms in a
different form. Equations (1.34)–(1.37) give the Kalman filter in covariance form.
The filter state as displayed is the Y[k]-mean of the base-state, x̂[k], and the Y[k]-
covariance of the estimation error, Pxx [k]. The latter is indicative of the uncertainty
that remains in the estimate of x[k] after all of the information in Y[k] is exploited.
The state space of a linear system is arbitrary to some degree. The information
implementation of the Kalman filter utilizes an alternative (but equivalent as long
as {Pxx [k]} is a positive sequence) state space representation. Instead of the error
covariance, Pxx [k], the filter propagates its inverse Dxx [k] = Pxx [k]−1. Instead
of the Y[k]-conditional mean of the base-state, the filter propagates the product
d[k] = Dxx [k]x̂[k]. To contrast it with the uncertainty matrix Pxx [k], Dxx [k] is
called the information matrix, and the Kalman filter in this transformed state space
is called the information filter [AM79]. The relative computational advantage of
these alternative implementations is explored in textbooks on filtering. Here we
will mix these state spaces to clarify the organization of the subfilters rather than
to suggest the best way to implement the IMM.

Write the inverse of the observation noise covariances as Dx = R−1
x . The extrap-

olation and update relations in the subfilters in the IMM can be written [LBS93]:

the IMM base-state estimator

Extrapolation:

x̂ j [k + 1]− = A j x̂
j [k]; j ∈ S, (1.40)

P j
xx [k + 1]− = A j P j

xx [k]A′j + Rχ( j); j ∈ S. (1.41)

Update:

�d j [k + 1]+ = H ′Dx y[k + 1]; j ∈ S, (1.42)

�D j
xx [k + 1]+ = H ′Dx H ; j ∈ S. (1.43)

As in (1.36) and (1.37), �d j [k+1]+ (respectively �D j
xx [k+1]+) is the increment

in the estimate at an observation, for example,

d j [k + 1]+ = d j [k + 1]− +�d j [k + 1]+.

The updated mean and covariance, (x̂ j [k+1]+, P j
xx [k+1]+), are directly produced

from (d̂
j
[k+1]+, D j

xx [k+1]+). Instead of the single filter with random coefficients
displayed in (1.34)–(1.37), Equations (1.40)–(1.43) describe S constant coefficient
subfilters.
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The algorithm for each of the elemental filters has an intuitively appealing form.
The plant noise (Rχ( j) in (1.41)) adds uncertainty to the estimate during each
extrapolation, and each update adds information (H ′Dx H in (1.43)). The extrapo-
lation equation is linear in x̂ j [k], and the base-state update is linear in y[k + 1],
with the latter weighted proportionately to the sensor gain (H ) and inversely to the
sensor noise (Dx ).

To update the modal probabilities, look at the measured residual at the output of
each of the subfilters,

r j [k + 1] = y[k + 1]− H x̂ j [k + 1]−; j ∈ S.

In a regime-invariant system in which φ[k] ≡ e j , the residual of the j th filter is
actually the innovations increment and has covariance

R j
yy[k + 1] = H P j

xx [k + 1]−H ′ + Rx .

In a hybrid system, the modes communicate, and none of the residuals is truly the
innovations increment. Still, let us retain the name R j

yy[k + 1] for the functional
form with D j

yy[k + 1] its inverse and S j
yy[k + 1] the square root of the inverse:

R j
yy[k + 1]−1 = D j

yy[k + 1] = S j
yy[k + 1]′S j

yy[k + 1].

The modal estimate is produced in the IMM as follows. Let �(u) be the unit
Gaussian density function, Nu(0, I ). Let

γ j [k + 1] = �
(
S j

yy[k + 1]r j [k + 1]
)
.

The regime probabilities are given by:

the IMM modal-state estimator

Extrapolation:

φ̂[k]− = �φ̂[k − 1]. (1.44)

Update:

q[k] = φ̂[k]− ∗ γ [k + 1]. (1.45)

The quantity after the update, q[k] = [qi [k]], is a vector of unnormalized prob-
abilities and, when normalized, is accepted as a replacement for the regime prob-
abilities: q[k]/1′q[k] �→ φ̂[k]. The rationale for this algorithm is that the smallest
residuals (when scaled by S j

yy[k + 1]) should be associated with that subfilter iden-
tified with the actual regime. After propagating φ̂[k − 1] forward using the matrix
of modal transition rates �, the likelihoods are corrected with factors that are
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(relatively) large for the current regime and small for the others. The calculation
of φ̂[k] is inexact, and there is no claim that the true Y[k + 1]-modal probabilities
have been computed.

We now have a new Y[k + 1]-distribution of x[k + 1] as a Gaussian sum with S
terms:

x[k + 1] ∈
∑

j

e′j φ̂[k]N
(
x̂ j [k + 1])+, P j

xx [k + 1]+
)
.

The base-state mean and covariance can be obtained using the formulas that apply
to Gaussian sums [AM79, Section 8.4, Equation (4.5)]:

x̂[k + 1] ≈
∑

j

x̂ j [k + 1]+e′i φ̂[k], (1.46)

Pxx [k + 1] ≈
∑

j

(
P j

xx [k + 1]+ + (x̂ j [k + 1]+

− x̂[k + 1])(x̂ j [k + 1]+ − x̂[k + 1])′
)
e′i φ̂[k]. (1.47)

To this point, the implementation of the IMM is close to that of the PL1-MM
algorithm. Both use S subfilters of the same form and both update {φ̂[k]} using
the residuals from the subfilters. The IMM includes the regime transition rates
and the MM-filter ignores them. The calculation of the mean of the base-state is a
natural consequence of the S-fold Gaussian wavelet representation of the base-state
density. If modal transitions were not permitted (e.g., in the PL1-MM filter), then{

x̂ j [k + 1]+, P j
xx [k + 1]+; j ∈ S

}
would provide the initial conditions for the next cycle of the subfilters.

The singular properties of the IMM follow from a sophisticated merging step.
The Gaussian sum used to compute the base-state estimates is not used as a starting
point for the next cycle of extrapolation and update. To approximate the Y[k + 1]-
probability of a length-two modal path, a mixing probability αi

j [k + 1] is defined
as follows:

αi
j [k + 1] = � j i φ̂ j [k]

(�′φ̂[k])i
. (1.48)

For every i ∈ S, {αi
j [k + 1]} is a probability in j and is accepted as a replacement

for P[φ[k − 1] = e j |φ[k] = ei ∧ Y[k + 1]]; that is, αi
j [k + 1] is the conditional

probability that regime ei was immediately preceded by e j .
Let us focus on the i th subfilter at t = (k + 1)T . The base-state mean, x̂ i [k +

1], should involve the estimates of the subfilters, {x̂ l[k + 1]+; l ∈ S}, and the
likelihood of a transition el �→ ei at time (k + 1)T (and similarly with the
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base-state error covariance, Pi
xx [k + 1]). The updated outputs of the subfilters,

{x̂ j [k + 1]+, P j
xx [k + 1]+; j ∈ S}, can be combined using the merging formula of

the Gaussian sum but this time restricted to the subfilter level:

x̂ i [k + 1] =
∑

j

x̂ j [k + 1]+αi
j [k + 1], (1.49)

Pi
xx [k + 1] =

∑
j

(
P j

xx [k + 1]+ + (x̂ i [k + 1]+

− x̂ j [k + 1])(x̂ i [k + 1]+ − x̂ j [k + 1])′
)
αi

j [k + 1]. (1.50)

The augmentation,∑
j

· + (x̂ i [k + 1]+ − x̂ j [k + 1])(x̂ i [k + 1]+ − x̂ j [k + 1])′αi
j [k + 1],

is an adaptive analogue to adding pseudonoise. The next cycle begins with a
Y[k + 1]-distribution of x[k + 1] given by the Gaussian sum:

x[k + 1] ∈
∑

j

e′j φ̂[k]N(x̂ j [k + 1], P j
xx [k + 1]).

If modal transitions are not allowed, αi
j [k + 1] = 0 for i �= j , and(

x̂ j [k + 1], P j
xx [k + 1]

) ≡ (x̂ j [k + 1]+, P j
xx [k + 1]+

)
.

When modal changes can occur, the IMM avoids subfilter drift by moving the means
after mixing toward an intermediate value. For example, if an e j �→ ei transition
is likely, the initialization of i th subfilter would weight heavily the state of the j th
subfilter. The IMM algorithm also augments the subfilter covariances through the
use of a local version of the mean spreading term found in (1.50). The gain of “less-
likely” filters is kept higher thereby. Simulation suggests that the IMM provides
the performance found in path-length-two, multiple model filters [BBS88].

The motivation behind the IMM is the efficient computation of an approximation
to {x̂[k]}. The wavelet distribution∑

j

e′j φ̂[k]N
(
x̂ j [k + 1], P j

xx [k + 1]
)

is not claimed to be the Y[k]-joint distribution of the zygostate, nor is it. Approxi-
mations induced by the merging of the subfilters and the update rule for {φ̂[k]}
preclude accurate calculation of the distribution function as well as relevant higher
moments (e.g., Rxφ[k] = E[x[k]φ[k]′ | Y[k]]). Since only the mean of {x[k]} is
sought, the regime models can be fairly crude.

There are different ways in which the IMM can be configured. The modal decom-
position is arbitrary to some degree as are the regime models selected for base-state
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evolution. To illustrate the manner of implementation of the IMM, return to the
tracking problem studied earlier. In [LBS93] and [WKBS98] applications related
to air traffic control were explored. In contrast to the earlier tracking example, the
expected turn rates of the aircraft are moderate. The simplest IMM is framed with
a base-state representation like that used in the earlier EKF analysis with the turns
neglected. (This decouples the X and the Y motion.) The IMM uses two regimes
instead of the single regime employed by the EKF:

(i) A high plant noise level during a turn (φ = e1).

(ii) A low plant noise level during constant velocity flight
(φ = e2 with Rχ(1)� Rχ(2)).

It was observed in the references that the IMM acts as a “self-adjusting variable
bandwidth filter” because the φt = e2 filter has a low bandwidth while the φt = e1

has a high bandwidth [WKBS98]. The SNR was good in the case studied with a 3◦/s
turn identified in three samples. Moreover, the “accuracy of the turn rate estimate
is not important as far as the quality of the (base-state) estimates are concerned”
[LBS93, p. 190].

This example illustrates the robustness of the IMM. The rudimentary regime
models do not mimic the geometry of the motions, and this prevents the modal
estimate from being particularly good. But good modal estimates are not required
for good estimates of {x[k]}: Low quality estimates of the conditional distribution
function can still be used to obtain high quality estimates of the mean.

Although the elemental IMM works well in a benign environment, it would not be
acceptable for use with highly maneuverable targets (as noted in [LBS93]) because
it completely neglects the geometry of the turning motion. The turn-submodel
replaces a directional acceleration with one that is omnidirectional, albeit with a
higher intensity. To represent the directionality of the acceleration more closely,
adjustments to the regime models can be made. In [WKBS98] it was proposed that:

(i) During a turn (φt = e1) the aircraft acceleration is a Gaussian white process
with standard deviation 2 g in a direction perpendicular to the velocity and
standard deviation 0.4 g along the velocity vector.

(ii) During coasting motion (φt = e2), the aircraft acceleration is a Gaussian
white process with standard deviation 0.01 g in both directions.

It is still true that Rχ(1)� Rχ(2), but the X and Y motion are now coupled during
a turn. Submodel 1 is nonlinear, but conventional methods can be used to linearize
it. It was found by simulation that to achieve comparable performance from the
EKF, the selection Rχ(1) is required throughout the experiment. The EKF has a
concomitant deterioration in tracking accuracy during uniform motion.

As a further refinement of the IMM, the turn rate process, {�[k]}, can be treated
as a component of the base-state with first-order dynamics. This raises the dimen-
sion of the kinematic model and creates a multiplicative nonlinearity that must
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be accommodated. However, when the turn rate is integrated into the base-state
vector, the intensity of the additive excitation in the IMM can be reduced consid-
erably: During a turn the Gaussian-white acceleration has standard deviation 0.2 g
in a direction perpendicular to the velocity and 0.1 g along the velocity vector (as
compared with 2 g and 0.4 g in a submodel without turn rate as a base-state). For
mild turns the inclusion of the turn rate yields performance superior to that of the
Kalman filter and the lower order IMMs.

1.5 Modal Observations

Multiple model methods work quite well in a LJS when the output SNR is high
and the accurate computation of higher (or cross-) moments is not required. High
quality estimation in the IMM depends more on the celerity of detection of a modal
transition than it does on accurate determination of the specific change. There are
situations in which the process {yt} alone is not sufficiently informative to achieve
the estimation quality required. In air traffic control, suppose that the radar is of low
quality or that the sampling frequency is low. By the time {yt} has been processed
to identify a change in the modal-state, the aircraft could have drifted outside the
tracking window resulting in loss-of-lock (LOL). In this circumstance, a quicker
and less ambiguous indication of changes in {φt} is needed.

When the modal process is not clearly distinguishable in {yt}, a direct measure-
ment of the mode is useful. If the regime is identified with a physical quantity (e.g.,
a temperature) the representation for the modal observation could be an analogue
of (1.4) in which {�t} is measured in a white noise channel. However, the plant
regime is often a category variable: It may have a name rather than an intrinsic
value, and the ordering of the regimes follow some prevailing convention. In this
case, identification of the current regime is done by looking at global attributes of
the plant. The information that goes into what we call the modal measurement may
be compiled from a diverse collection of sensors. These sensors provide a raw data
aggregate (a data frame) consisting of the measurements bearing on the operating
regime of the system. These measurements may differ in kind and in form; for ex-
ample a FLIR imager may provide a two-dimensional picture of a target, whereas
another sensor may provide a multispectral decomposition of the exhaust plume of
the same target. An online processor would be overwhelmed if forced to treat each
element of the primitive data set (e.g., each pixel in the image) as an “output.” To
reduce the data handling demands on the estimator–controller, the data frame is first
reduced to a category statement by a high-level preprocessor; for example, based
upon its shape and emission spectrum, the target is classified as being an aircraft of
type 1. After processing, the modal observation process comprises a sequence of
classifications. Using various artifices, the observation categories can be identified
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with the set of regimes. In this event, the modal observation process, {zt}, can be
written as a vector counting process in which the i th component is the number of
times the regime has been classified as ei : �zt = ei if the ostensible regime at
time t is the i th. In this way the estimator–controller throughput is reduced to a
manageable level.

When the modal measurement is ambiguous and/or infrequent, a problem of
considerable difficulty arises. Suppose that the full sensor suite consists of the
conventional measurement, {yt}, augmented with a direct modal measurement,
{zt}. How then should these disparate measurements processes be fused for optimal
performance? Should {zt} be used to identify {φt}, and {φt}, so identified, be used
in a path-specific Kalman filter (track data fusion)? Alternatively, should {zt} be
merged with {yt} to form {gt}, and {Gt} used to form the estimates? This would be
low-level data fusion.

For example, suppose an aircraft of unknown type is in the field of view of an
imaging sensor and a radar. The radar gives a line-of-sight measurement to the
center of reflection of the aircraft (bearing) and there is perhaps also a distance
measurement (range). The radar observations are measurements of a point target
and easily accommodated in {yt}. But the aircraft type (the modal-state) is a category
variable. If the aircraft is close enough, a multipixel image can be created (the data
frame). Shape analysis can be used to classify the target (the initial preprocessing).
The output of the image generation/processing node is a statement about the aircraft
(e.g., “the aircraft is an F-14”). The modal sensor would in this case be the composite
image generation–preprocessing node associated with the imager–image processor.
The modal sensor maps the true mode (F-14) into a statement of modal condition.
(Image distortion might lead to the conclusion that the aircraft is a helicopter.)

In principle, the modal status could be determined from {yt} alone; for example, a
helicopter has a different motion pattern than does an F-14. Modal estimation from
a radar can be successfully done if {yt} is such as to distinguish between modal
categories in an expeditious manner. This type of analysis is done in the multiple
model algorithms described above. But a quicker and often more accurate approach
is to take the aggregate contained in the data frame and use that to assist in motion
estimation. The observation processes should be processed synergistically rather
than in parallel.

There are two common methods for modeling the modal sensor. The first mimics
(1.4). Suppose each regime has a characteristic signature in the measurement (e.g.,
φt = ei is distinguishable in the measurement by a slope hi ). If we wish to determine
the current mode, we need only look at dzt/dt (or more likely �zt/�t for some
small �). Since dzt/dt ∈ {hi ; i ∈ S}, the value of φt can be recovered from {zt}.
Clearly, the signature vector h = [hi ] could be a function of time with no essential
change in the argument.
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Unfortunately, the plant is not usually so cooperative. The modal measurement
is less determinate. Specifically, suppose the modal signature is observed in an
additive white-Gaussian channel:

modal-state measurement: time-continuous; additive noise

dzt = h′φ dt + dηt , (1.51)

where {ηt} is a Brownian motion with intensity Rφ > 0. Now {zt} has no “slope.”
The average slope can still be determined (E[dzt |Ft ] =∑i hiφi dt), but over what
interval should the average be calculated? This creates a dilemma: Long averaging
intervals give better estimates of the slope of the measurement because the noise
is white, but near a modal transition, the average slope is the signature of neither
regime.

Equation (1.51) has an analogue when there are time-discrete modal measure-
ments (see [LDB98]):

modal-state measurement: time-discrete; additive noise

z[k] = h′φ[k]+ η[k], (1.52)

where {η[k]} is a Gaussian white sequence with covariance Rφ > 0. As was the
case with time-continuous measurements, the noise-free (Rφ = 0) case is easily
solved; φ[k] = ei if z[k] = hi . With noise, some form of averaging must be used to
find the regime. With time-discrete measurements, not only is noise a problem, but
also the intersample delay: Even if φkT is measured, φkT+δ is random if 0 < δ < T .

Equations (1.51) and (1.52) have a conventional form, and many of the common
approaches to estimation can be applied if the modal sensor can be so represented.
For example, suppose �t is the angular orientation of an aircraft in a video image.
If target orientation is added as a base-state component, the output of an image
classifier can be thought of as providing the true orientation plus some Gaussian
noise. A high-resolution imager could be represented as a “data . . . sequence of
2-D images resulting from projection of the scene volume containing the targets
onto the focal place of the imaging sensor. [MSG95].” After preprocessing, the
measurement “is a nonzero-mean white Gaussian process with mean the projective
transformation of the scene” [MSG95]. This approach fits nicely with (1.52).

In many applications, however, the classical white-noise-channel measurement
models will not suffice. The modal sensor is both a data collector and a preprocessor;
it collects data from diverse sources, and using suitable rules, it classifies each data
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frame into one of a predetermined set of categories. Suppose the 2-D projection of
an F-14 is compared pairwise with a fixed set of templates formed by looking at an
F-14 at different orientation angles. Figure 1.7 shows a sequence of images of an
F-14 as it rolls. These data frames were created in infrared at a rate of 30 frames/s at
the Point Mugu Naval Air Station and are displayed here as visible duplicates. The
day was clear without foreground occlusions. Label the frames with an X−Y or-
dering beginning in the lower left corner with frame (1,1). Even though the range is
essentially constant, it is apparent that there is considerable variation in the number
of pixels-on-target for different orientations (e.g., (3,7) is “clearer” than (3,1) say).
Figure 1.7 superimposes upon the target the silhouette selected by the image proces-
sor from the replica data base. Except for frame (3,3), the classifier did a good job.

The experiment displayed in Figure 1.7 illustrates some of the potential problems
that arise when a modal classifier is used. The limited replica data base and the need
to minimize the latency interval during which image classification is performed
combine to restrict the precision of the regime measurement. The mapping from

Figure 1.7. FLIR images of a maneuvering F-14 and the template selected by the image
processor.
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φt to zt is not well modeled with an additive noise channel. Pattern classifiers are
idiosyncratic. They make errors that are neither symmetric nor independent of the
mode itself. Rather, if φt = ei , a classifier may be biased toward certain modal
groups to the exclusion of others.

To model the modal sensor–preprocessor suppose that the data frames are pro-
cessed to yield an output statement with mean frequency λ samples/s and with inter-
sample times that are exponentially distributed and independent of modal process.
Each modal measurement is classified as coming from one of the S modal categories.
Accumulate these output classifications to form a right-continuous, S-dimensional,
counting process {zt}. The increment in {zt} is the zero vector between measure-
ments, and a unit vector at a measurement time. For example, �zt = ei indicates
that the modal sensor classified the data frame as coming from regime ei at time t .

To illustrate, consider a simple situation in which the modal measurement is
perfect and the plant is in regime e1 for an interval. In this case, the measure-
ment sequence would be �zt = e1 with rate λ; that is, the observation string
{e1, e1, e1, e1, . . .} is compatible with regime e1 and has mean reconfirmation time
1/λ s.

But suppose the sensor is not perfect and a different observation string is received
(e.g., {e1, e1, e2, e1, . . .}). The receipt of �zt = e2 has two consequences. First, the
rate of occurrence of �zt = e1 is now less than λ, and this should be judged as
a failure to reconfirm hypothesis φt = e1. Secondly, the rate of �zt = e2 is now
positive. This anomalous observation could be a false indication of modal change.
(φt = e1 but �zt = e2), or it could be symptomatic of a modal transition ({φt}
transitions from e1 to e2).

Denote the filtration generated by {zt} by {Z t}. The output filtration is Gt =
Y t∨Z t .Clearly, if the fidelity of the modal sensor is such that {φt} can be determined
with good accuracy, estimation of {xt} given {Gt} reduces to the Kalman filter with
{φt} replaced by its Zt -based estimate. The solution to the state estimation problem
in a hybrid system requires at least theGt -expectation of {xt , φ}with χ̂t = x̂t+χφ̂t .

To model a modal classifier, neglect delays in the forming and preprocessing of a
data frame. Let quality of the modal sensor be represented by the S×S discernibility
matrix P = [Pi j ], where Pi j , is the probability that modal state ei will be selected
by the classifier if e j is the true mode at time of measurement, that is,

Pi j = P(�zi = 1 |φ = e j ).

The columns of P are probability vectors: Pi j ≥ 0; 1′P = 1′. Perfect modal mea-
surements are implied by P = I. The form of P is flexible enough to include aliasing
and bias.

For this measurement model, the quality of modal inference is clearly a function
of the sample rate (λ) and the ability of the modal sensor to correctly classify a
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single measurement (P). Suppose φt = ei . If a measurement is received at time
t , its distribution across categories is given by P·i . Denote the Ft -conditional rate
of individual observations by λt = λPφt : The i th component of λt dt is the Ft -
probability that an observation will be received and be classified in the i th modal bin
in [t, t + dt]. Let dηt = dzt − λPφt dt = dzt −λt dt . Then, since E [dzt −λt dt |
Ft ] = 0, {ηt} is an Ft -martingale. The modal observation can thus be written:

modal-state measurement: time-continuous; classifier

dzt = λPφt dt + dηt . (1.53)

With h = λP′, Equation (1.53) looks exactly like (1.51). The observation in-
crement is the sum of a term linear in modal-state (h′φ) and a disturbance that is
a martingale increment (dηt). But {ηt} in (1.53) is not a Gaussian process, is not
continuous, is not centered around zero, and is not independent of the modal-state
process. Rather, {ηt} is a purely discontinuous martingale. If the discontinuities in
{ηt} are removed, the predictable quadratic variation of what remains is identically
zero. Consequently, the EKF-like algorithms based upon the {zt} in (1.53) are not
likely to be satisfactory.

There is a discrete analogue to (1.53). Let the sample rate again be 1/T . Then
the observation at t = kT is

modal-state measurement: time-discrete; classifier

z[k] = Pφ[k]+ η[k], (1.54)

where η[k] = z[k]− Pφ[k]. Since E[z[k]− Pφ[k] |F[k]] = 0, {η[k]} is an F[k]-
martingale difference sequence. The model given in (1.54) is useful in studies of
time-discrete plants. Denote the filtration generated by {z[k]} by {Z[k]}. In discrete
time, this model for {z[k]} can be somewhat problematic. Equation (1.54) implies
that the data frame upon which z[k] is based can be formed and preprocessed to
provide an observation with essentially no delay. This is reasonable if the plant
is time continuous and measurement has a simple structure (e.g., preprocessing
a radar return to form {y[k]} requires little time). When the preprocessing delay
is small and the estimator–controller is updated as soon as the preprocessing is
complete, this measurement-state concurrence is justifiable. When the data frame
requires a higher level of preprocessing, there is output latency: The observation
lags the modal-state by the latency interval. By its nature latency is more common
in {z[k]} than it is in {y[k]}. The minimum time increment in a time-discrete system
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is T , and latency could cause any action to be delayed for a sample time or more.
In this book, however, latency will be ignored.

The advantages of direct modal measurement in state estimation are appar-
ent and were noted early in various contexts. Typically problems were studied
within an EKF framework [AKG86]. Because of the nonlinear, discontinuous,
non-Gaussian nature of the plant and the observation, the development of an exact,
finite-dimensional, recursive algorithm for generating the Gt -conditional mean of
the comprehensive state is beyond reach. In subsequent chapters, approximations
to {x̂t , φ̂t} are developed under various assumptions on the plant and measurement
system.



2
The Polymorphic Estimator

2.1 Introduction

At its basic level, an estimation algorithm is a causal mapping from a spatiotempo-
ral observation (the measurement) to an approximation of a primary process (the
signal or state, depending on the context). Estimators have become increasingly so-
phisticated as more versatile online processors have become available. If the state
process has a suitable structure, improved estimation and prediction is achieved
through model-based synthesis procedures. These approaches, as their name sug-
gests, use a comprehensive analytical model to delineate both the state dynamics
and the precise relationship between the state and its measurement. Using this
model as an intermediary, a problem in optimal inference is posed. The solution
to this optimization problem is then said to be the best estimation algorithm in
the application. Through the model, the estimator is tuned to subtle patterns in the
measurement, thus enabling good performance to be achieved in the presence of
significant measurement ambiguity. Of course, the model is only an abridgement
of reality, and to the degree that the model fails to adequately portray the salient
features of the actual state processes, there is justifiable concern that the algorithm
may be tuned improperly and may see things in the observation that are not actually
there.

Perhaps the most widely studied model-based algorithm is the Kalman filter and
its lineal variants. As described in Chapter 1, the dynamic features of the plant are
represented by a base-state process {xt}. The observation process {yt} is a linear
function of the base-state – albeit a noisy one. Although this summary descrip-
tion would suggest a modeling hierarchy in which the base-state vector gives the
intrinsic description of plant evolution, and the observation is subordinate to it,
frequently these two constituents of the plant model are interlinked in a horizontal
manner. Measured properties of the plant are directly reflected in the equations of
dynamic evolution, while unmeasured ones are ignored. This oft neglected linkage

41



42 The Polymorphic Estimator

between sensor capabilities and the state space model is clearly seen in the motion
model of an agile aircraft where the components of xt would include positions,
velocities, and perhaps accelerations in an appropriate reference frame. A radar
provides measurements of the center-of-reflection attributes of the aircraft (e.g.,
range and bearing). Not coincidentally, the base-state space consists of the prop-
erties of a point aircraft. Other relevant but unmeasured variables (e.g., aircraft
type and orientation) are not included in the target dynamics because they are not
reflected clearly in the measurement. In this sense, the sensor suite has a major role
in determining the components of the state space model; new sensors create new
components in the state space.

Chapter 1 described a flexible model for quantifying the plant dynamics and
observation. The plant model is phrased in terms of a set of nonlinear stochastic
differential equations. Let us start with a probability space (�,F,P;Ft) and a
time interval [0,T]. On this space, the plant model was given by:

dχt = f(χt , υt ,�t) dt + g(χt , υt ,�t) dwt , (1.1)

dgt = r(χt , υt ,�t) dt + s(χt , υt ,�t) dnt , (1.2)

where {υt} is the plant input, {gt} is the plant output, and {χt} is the plant state.
The plant model is subject to initial conditions χ0 and g0 and exogenous excitation
{�t}, {wt}, and {nt}.

Estimation and control is difficult within the framework of the plant model. If
there are a finite number of operating points and if the plant makes extended sojourns
in these locations, a hybrid model is proposed as a replacement for (1.1) and (1.2).
The modal-state, φt , is a pointer to the current regime: If �t = �κ , then φt = eκ .
The base-state variables are deviations from the current mode: xt = χt − χφt ;
ut = υt − υφt . The zygostate is the pair (xt , φt). The plant model is replaced with
a pair of equations:

base-state model

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi +
∑
i,l

(M(i, l)xt

+ (χi − χl)+ M(i, l)χi + ρ(i, l))φi e′l�φt , (1.7)

modal-state model

dφt = Q′φt dt + dmt . (1.12)
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The modal-state is represented by an Ft -Markov process. Successive linearizations
are used to delineate base-state evolution, and the exogenous processes in (1.7) and
(1.12) are Ft -martingales ({wt} is Brownian motion with intensity W and {mt} is a
purely discontinuous martingale).

The sensor suite is composed of complementary elements. There is a base-state
sensor with output {yt} generating the filtration {Yt}:

dyt = Hχt dt + dnt , (2.1)

where {nt} is an Ft -Brownian motion with intensity Rx > 0 (d〈n, n〉t = Rx dt) and
y0= 0. There is a modal-state sensor with output {zt} generating the filtration {Zt}:

dzt = h′φt dt + dηt , (2.2)

where {ηt} is an Ft -martingale (d〈η, η〉t = Rφ dt with Rφ > 0). In some applica-
tions {ηt} is a Brownian motion and in others it is a discontinuous process. All of
the exogenous processes are independent. Low level data fusion merges the data
streams to create an observation gt = vec(zt , yt ) (sometimes treated as the array
gt = (zt , yt)) with filtrationGt = Yt∨Zt . An engineer seeks theGt -conditional dis-
tribution of the zygostate, or barring that, the Gt -zygostate moments required for
the task at hand.

The random processes generated by (1.7) and (1.12) are instances of a class
of processes called semimartingales. An Ft -semimartingale is a process {ςt} that
satisfies a stochastic differential equation:

dςt = ft dt + dµt , (2.3)

where { ft} is right continuous and Ft -adapted, and {µt} is an Ft -martingale. This is
not the most general construction but will suffice for our purposes (see [Ell82, Defi-
nition 12.1] or [WH85, page 234]). In the integral equation associated with (2.3),
recall that the integrands are replaced by their predictable modification. In a hybrid
system then, both the state process and the observation process are semimartingales.

When working with semimartingales, it is expedient to generalize the notion
of optional quadratic variation and define the co-quadratic variation of a pair of
semimartingale processes as follows (see [Ell82, Definition 10.7]). Let {ςt} and
{ϕt} be semimartingales. The co-quadratic variation {[ς, ϕ]t} is generated from its
increments: d[ς, ϕ]t = (dςt)dϕ′t . A list of properties of the covariation process is
presented in [WH85, Chapter 6, Proposition 6.1]:

• If {ςt} is differentiable, its co-quadratic variation with any semimartingale
is zero; for example, (h′φt dt)(h′φt dt)′ = 0.†

† The process in view here is ςt =
∫

[0,t]
h′φτ dτ . The significance of the observation is that, in semi-

martingale calculus, terms containing (dt)2 vanish.
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• If {ςt} is a Brownian motion, its co-quadratic variation with any discrete
martingale or any independent Brownian motion is zero; for example,
d[w, n]t = 0 and d[w,m]t = 0, but {[w,w]t} is not the zero process.

• If {ςt} is a purely discontinuous martingale, its co-quadratic variation with
any other discontinuous martingale that shares no jumps is zero; for exam-
ple, d[m, η]t = 0, but {[m,m]t} is not a zero process.

In what follows, the innovations process, {νt}, is particularly important. The
innovations increment is the difference between the measurement increment and its
Gt -expectation: dνt = dgt − E[dgt |Gt ]. The vector innovations process is easily
partitioned into a composite vector with components readily identified with the
sensor types: The modal-state innovation increment is dνφ = dzt − E[dzt | Gt ],
and the base-state innovation increment is dνx = dyt−E[dyt |Gt ]. The innovations
process is a Gt -martingale: E[dνφ |Gt ] = 0 and E[dνx |Gt ] = 0.

The observation processes can be written in two ways:

dyt = H(xt + χφt) dt + dnt , (2.4)

dzt = h′φt dt + dηt , (2.5)

where {vec(nt , ηt)} is an Ft -martingale, and

dyt = H(x̂ t + χφ̂t) dt + dνx , (2.6)

dzt = h′φ̂t dt + dνφ, (2.7)

where νt = vec(νx , νφ) is a Gt -martingale. The processes {νx} and {nt} are contin-
uous, and their predictable quadratic variation is simply written

d〈νx , νx ;Gt 〉t = d〈n, n;Ft 〉t
= Rx dt. (2.8)

The optional quadratic variation of both processes is Rx t , and similarly for {νφ} if
{ηt} is a Brownian motion. In this event, the predictable quadratic variation of the
noise in the modal sensor is

d〈η, η;Ft 〉t = d〈νφ, νφ;Gt 〉t
= Rφ dt. (2.9)

We will assume that all of the Gt -martingales we will encounter can be expressed
as integrals with respect to {νt}. (For related results see [Ell82, p. 279] and [WH85,
Chapter 6, Proposition 7.3].)

2.2 Modal Estimation

Before we develop the full zygostate estimation algorithm, consider the simpler
problem in which we seek only the regime probabilities. Two models have been
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proposed for the modal measurement, but let us focus on the case in which the
measurement noise is white and Gaussian (see (1.51)). Observe that†

E[dφ̂t |Gt ] = E[φ̂t+dt − φ̂t |Gt ]

= E[φt+dt − φt |Gt ] = E[dφt |Gt ]. (2.10)

Consequently, the increment in {φ̂t} can be expressed as

dφ̂t = E[dφt |Gt ]+ dµt , (2.11)

where {µt} is a Gt -martingale.
Any martingale increment can be expressed as a Gt -multiple of the innovations

increment:

dφ̂t = Q′φ̂t dt + γt dνt , (2.12)

where {γt} is a Gt -predictable gain process. Equation (2.12) is of the form we seek –
a predictor (Q′φ̂t dt) corrector (γt dνt ) with the innovations increment used for the
latter (compare (1.18) of the Kalman filter). The correction term can be partitioned
compatibly with the innovations process: γt dνt = γφφ dνφ + γφx dνx and

dφ̂t = Q′φ̂t dt + γφφ dνφ + γφx dνx . (2.13)

The algorithm will be complete when the gain matrix, γt = (γφφ, γφx), is de-
termined. To find the gain, an approach used by [Ell82, Chapter 18] and [WH85,
Chapter 7] is useful. Both {φt} and {gt} are semimartingales (see [WH85, Chapter 6,
Equation (6.2)]):

d(φt g
′
t) = (dφt)g

′
t + φt(dgt)

′ + (dφt)dg′t . (2.14)

The modal process is purely discontinuous and the observation is continuous. There-
fore (dφt)dg′t = 0. From (1.12), we have

(dφt)g
′
t = (Q′φt dt + dmt)g

′
t

= Q′φt g
′
t dt + dµt ,

where here and in what follows {µt} is the matrix Ft -martingale appropriate to the
application. The second term in (2.14) can be written

φt(dgt)
′ = (φtφ

′
t h dt + φt dη′t , φtχ

′
t H ′ dt + φt dn′t).

Combining these equations, we obtain

d(φt g
′
t) = (φtφ

′
t h + Q′φt z

′
t , φtχ

′
t H ′ + Q′φt y′t) dt + dµt . (2.15)

Taking the Gt -expectation of (2.15) gives

E[d(φt g
′
t) |Gt ]/ dt = ((Rφφh + Q′φ̂t)z

′
t , (Rφχ H ′ + Q′φ̂t)y′t), (2.16)

† Because G t ⊂ G t+dt , E[φ̂t+dt |G t ] = E[E[φt+dt |G t+dt ] |G t ] = E[φt+dt |Gt ].
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where Rφφ(t) is the Gt -correlation of φt(Rφφ(t) = E[φtφ
′
t | Gt ]), and Rφχ is the

Gt -cross correlation of φt and χt (Rφχ(t) = E[φtχ
′
t | Gt ]). The corresponding

covariances are Pφφ , the Gt -covariance of φt (Pφφ(t) = E[φ̃t φ̃
′
t |Gt ]), and Pφχ , the

Gt -cross covariance of φt and χt (Pφχ(t) = E[φ̃t χ̃
′
t |Gt ]).

We can express E[d(φt g′t) | Gt ] in another way. The measurement noises are
independent. From (2.13) we have

(dφ̂t) dg′t = (γφφ dνφ dη′φ, γφx dνx dη′x),

which can be simplified to

(dφ̂t) dg′t = (γφφ dηφ dη′φ, γφx dηx dη′x).

Also,

(dφ̂t)g
′
t = Q′φ̂t g

′ dt + dµt ,

φ̂t(dg′t) = (φ̂tφ
′
t h, φ̂tχ

′
t H ′) dt + dµt .

Collecting the terms gives

d(φ̂t g
′
t) = (γφφ Rφ + φ̂tφ

′
t h + Q′φ̂t z

′
t , γφx Rx + φ̂tχ

′
t H ′

+ Q′φ̂t y′t) dt + dµt .

Taking the Gt -expectation of this, we obtain

E[d(φ̂t g
′
t) |Gt ]/ dt = (γφφ Rφ + φ̂t φ̂

′
t h + Q′φ̂t z

′
t , γφx Rx

+ φ̂t χ̂
′
t H ′ + Q′φ̂t y′t). (2.17)

The predictable compensators, (2.16) and (2.17), must be equal, and so

(γφφ Rφ + φ̂t φ̂
′
t h + Q′φ̂t z

′
t , γφx Rx + φ̂t χ̂

′
t H ′ + Q′φ̂t y′t)

= ((Rφφh + Q′φ̂t)z
′
t , (Rφχ H ′ + Q′φ̂t)y′t).

From this it follows that

γφφ = Pφφh R−1
φ , and (2.18)

γφx = Pφχ H ′R−1
x . (2.19)

Substituting this into (2.13) yields

dφ̂t = Q′φ̂t dt + Pφφh R−1
φ dνφ + Pφχ H ′R−1

x dνx . (2.20)

Equation (2.20) is the dynamic equation of the Gt -conditional regime probabili-
ties with the corrector given explicitly by

Pφφh R−1
φ dνφ + Pφχ H ′R−1

x dνx .
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The probabilities propagate forward using the transition dynamics of the modal-
state. The correction gain increases with uncertainty (Pφφ), with observation gain
(h), and inversely with observation noise (Rφ).

Equation (2.20) appears to be the algorithm we seek. It is a stochastic differential
equation that generates the Gt -regime probabilities (a semimartingale) as a function
of the observation processes. It entails about the same level of complexity found
in the Kalman filter. By analogy with the Kalman filter, the next step in deriving
the modal filter would be to find the error covariances. In (2.20) there are two
covariances required. The first is

Pφφ(t) = E[(φt − φ̂t)(φt − φ̂t)
′ |Gt ] = diag(φ̂t)− φ̂t φ̂

′
t . (2.21)

The Kalman filter requires the solution to an auxiliary set of differential equations
for {Pxx} (see (1.19)). Here the modal-state error covariance matrix can be expressed
as an algebraic function of the regime probabilities themselves, obviating the need
to solve a matrix differential equation.

To implement (2.20), only {Pφχ } is needed. Unfortunately, we have no mecha-
nism to compute it. The closure achieved in the Kalman filter depends upon the
Gaussian structure of the problem. The presence of non-Gaussian elements in our
problem precludes a similar closed-form solution here. Thus, (2.20) fails as a so-
lution to the modal estimation problem.

The dual-sensor measurement architecture used in this book is motivated by the
need for expeditious identification of the regime, an identification that is difficult to
achieve from {yt}. In many applications, the modal measurement is selected for the
express purpose of tracking {φt}. In such systems, high level data fusion algorithms
use {zt} to determine {φt}. The regime path so identified is then used in some sort of
certainty equivalence algorithm to estimate {xt}. Motivated by this partitioning of
function, we can produce a good approximation to the modal estimator dynamics
even if we ignore the base-state observation:

dφ̂t ≈ Q′φ̂t dt + Pφφh R−1
φ dνφ. (2.22)

Equation (2.22) is a finite-dimensional, albeit nonlinear, stochastic differential equa-
tion for the conditional modal probabilities and provides an easily implemented
modal-state estimator [Ell82, Example 18.18].

2.3 The Polymorphic Estimator

The development of the modal estimator as given above illustrates the moment
formulation of the estimation problem in which the complete algorithm includes the
equations of evolution of both the principal Gt -moments of the zygostate (e.g., {φ̂t})
and those auxiliary moments required to compute the principal moments (e.g., {Pφφ}
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and {Pφχ }). When the auxiliary moments can be displayed as an algebraic function
of moments already calculated (e.g., Pφφ in (2.21)), the moment is called sequent.
Those moments that must be found by integrating their equations of evolution are
called canonical (e.g., φ̂t in (2.20)). Even though the observation model is linear
in the relevant states, the equation of evolution of a specific Gt -moment tends to
involve higher order canonical Gt -moments. And these in turn tend to involve yet
higher order canonical Gt -moments and so on.

There are situations in which this unending regress is avoided. In the LGM
Gφ

t -estimation problem, the Kalman filter provides dx̂ t as a function of the sec-
ond central Gφ

t -moment, Pxx (t). The stochastic equation for {E[x̃ t x̃ ′t x̃ i |Gt ]; i ∈ n}
would seemingly be required next. Fortuitously, this third central moment is known
to be zero. From this it follows that {Pxx} is a self-contained Gφ

t -semimartingale:
The moment process terminates at the second step.

When there is no base-state measurement (Gt = Zt), the analysis in the previous
section can be extended to give a finite-dimensional equation for {x̂t} [Bjo82].
Unfortunately, with no base-state updates, the base-state error covariance tends to
grow large over time. The filter proposed in [Bjo82] can be modified to accept {yt},
thereby reducing the growth of {Pxx} [DB94, DB96].

In the Gφ
t -estimation problem, {Pxx} is not a function of the base-state measure-

ment at all. Let the filtration generated by {φt} be denoted by {Ot}. Then {Pxx}
is independent of {Yt} given {Ot}. Specifically, d Pxx (t) in (1.19) has no term in-
volving dνx . Let us call moments for which the Gφ

t -increment is independent of
the increment in the base-state innovations φ-dominant moments (PD-moment).
Since {φt} is Ot -adapted, the modal-state probabilities are trivially PD-moments.
The Gt -regime probabilities do depend upon both observation processes, but if the
contribution from {dνx} is small, the only higher moment required for computing
{φ̂t} is a sequent moment, and the estimation algorithm is closed. In what follows
we will utilize the following approximation:

Approximation If P(t) is a PD-moment, the contribution to d P(t) from
dνx can be ignored as compared to that of dνφ .

The approximation does not imply that {P(t)} is Zt -adapted. Nor does it imply
that the quality of the modal sensor is particularly good. It does imply that in-
formation regarding the regime is more immediate in {zt} than it is in {yt}. For
example, consider an application in which we wish to track an aircraft (generate
{x̂ t}) and simultaneously identify the aircraft type (generate {φ̂t}). A high quality
radar ({yt}) might suffice for tracking, and a long interval of {x̂ t} could be postpro-
cessed to yield the value of the category variable. But how much better it would be
to have a visual image of the aircraft. From an image, target identification might be



2.3 The Polymorphic Estimator 49

immediate. Target identification from a sequence of distorted images is still faster
than identification from the radar process alone. The fact that the radar sequence
is neglected in modal estimation does not presuppose that the radar SNR ratio is
low (a well designed tracker may follow the aircraft effectively even though the
target type is uncertain) nor that the SNR of the imager is high (if high, fewer
data frames will be require to classify the target). Neglecting the radar in target
recognition acknowledges the fact that target type does not manifest itself clearly
in {yt}.

With the approximation, it is possible to derive a finite-dimensional equation for
the zygostate estimate. This estimator is called the polymorphic estimator (PME).
The details of the development are placed in the appendix. In this chapter we
will present the algorithm and place it within the context of more conventional
algorithms.

The PME can be developed for either a continuous or a classificational modal
observation process. We will describe only the latter. The model given in (1.53)
provides considerable flexibility and is particularly well suited to systems in which
the mode is a category variable and the modal sensor is a sophisticated classi-
fier. The PME utilizes the modal observations after first transforming them. Let
{ϑt} be a process that is constant between modal observations and that has incre-
ments �ϑt = h(λ̂

−1
t ∗�zt), where λ̂

−1
t is understood componentwise. The jumps

in {ϑt} have a natural interpretation. Suppose the modal observation is ei . Then
�ϑt is the i th row of P weighted by λ/λ̂i > 1. If the observation is confirming
(φ̂t ≈�zt = ei ), and if the discernibility matrix approximates the identity (good
modal distinguishability), then λ≈ λ̂i and �ϑt ≈ ei . If the observation is discon-
firming (�zt = ei ; φ̂t ≈ e j ; λ � λ̂i ;�ϑt ≈ (λ/λ̂i )ei ), the emphasis accorded to
φt = ei is much greater than that given to φt = ei in the previous case because of
the λ/λ̂i multiplier: Unanticipated events are given a higher weighting in {ϑt} than
are confirming events.

A particular notation makes the PME algorithm more intuitive in what follows.
Recall that xt (respectively φt ) is the base-state (respectively the modal-state) with
Gt -mean and error given by x̂t and x̃t (respectively φ̂t and φ̃t ). The second moments
of these variables are

Rxφ(t) = E[xtφ
′
t |Gt ],

Pxφ(t) = E[x̃t φ̃
′
t |Gt ],

with similar definitions for Pxx , Rxx , etc. Let us extend this notational convention
to higher moments as follows. Consider the two vectors xt and φt and the scalar φi .
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Let us display third moments as

Rxφφi (t) = E[xtφ
′
tφi |Gt ],

Pxφφi (t) = E[x̃t φ̃
′
t φ̃i |Gt ],

with similar definitions for Pxxφi , Rxxφi , etc.
This notation can be extended to compound events; for example

P(xxφi )φm = E[(x̃t x ′tφi)φ̃m |Gt ],

P(x φ̃i )xφm
= E[(x̃t φ̃i)x̃

′
t φ̃m |Gt ].

The parentheses in the subscript act as delimiters. This can be extended to fourth
moments; for example,

Pxxφiφm = E[x̃t x̃
′
t φ̃r φ̃m |Gt ].

The PME provides the dynamics of evolution for five canonical zygostate mo-
ments: theGt -mean of the zygostate, x̂ t ; φ̂t ; and three higher order central moments:
Pxφ(t), Pxx(t), and Pxxφm (t). Alternatively, the Kalman filter requires the calcu-
lation of only two canonical moments: x̂ t and Pxx(t). In the Kalman filter, other
error moments can be computed from these two because the base-state and error
are jointly Gaussian. We are not so fortunate in the hybrid case because the Gt -
zygostate distribution is not a member of a common parametric family. However,
it has already been noted that {Pxx} is a PD-moment. Clearly {Pxφ} and {Pxxφm }
are as well since both are identically zero under Gφ

t .
The PME is a finite-dimensional algorithm that generates the five canonical

moments. The defining equations involve a potpourri of sequent moments. In Ap-
pendix 1 these sequent moments are tabulated. In this chapter, let us look at an
abridged version of the PME in which there is neither plant state set point (χ = 0)
nor translation at modal transition (ρ(i, j)≡ 0). There is a variable actuating sig-
nal and there may be rotation or scaling at a modal transition. The general case is
presented in Appendix 1 and will be used where needed in the chapters that follow.

2.4 The Abridged PME: Time-Continuous
Plant and Observation

The case of a time-continuous plant with continous plant state and time-continuous
observation process is frequently treated in tutorials on Kalman filtering. Because
of its familiarity and relative simplicity, it presents an attractive context in which to
compare the Kalman filter and the PME . For this application, the PME comprises
the following coupled stochastic differential equations:
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modal estimation

Between modal measurements:

dφ̂t = Q′φ̂t dt. (2.23)

At a modal measurement:

φ̂+t = φ̂−t ∗�ϑt . (2.24)

base-state estimation

Between modal measurements:

dx̂t =
∑

i

(
Ai Rxφi + Bi

(
ut φ̂i −υPφφi

))
dt + Pxχ H ′R−1

x dνx . (2.25)

At a modal measurement:

�x̂t = Pxφ�ϑt . (2.26)

base-state covariance

Between modal measurements:

d

dt
Pxx =

[∑
i

(
Ai P(xφi )x + Bi

(
ut Pφi x − υP(φ̃φi )x

))]+ [·]′ − γx Rxγ
′
x

+
∑

i

Rχ(i)φ̂i +
∑
i,l

Qil M(i, l)Rxxφi M(i, l)′. (2.27)

At a modal measurement:

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk . (2.28)

base-state, modal-state cross covariance

Between modal measurements:

d

dt
Pxφ =

∑
i

(
Ai P(xφi )φ + Bi

(
ut Pφiφ − υP(φ̃φi )φ

))
−γx H Pχφ + Pxφ Q +

∑
i,l

Qil M(i, l)Rxφi . (2.29)
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At a modal measurement:

�Pxφ = −�x̂�x̂ ′ +
∑

k

Pxφφk�ϑk, (2.30)

where γx = Pxχ H ′R−1
x . Equations (2.23)–(2.30) along with the equation for

{Pxxφ j ; j ∈ S} delineate the PME for this particular case.

It is interesting to compare and contrast the PME with the Gφ
t -Kalman filter. The

modal-state is known in the Kalman filter and does not require an estimate. The
update in {φ̂t} has a form not unlike that found in the IMM (see (1.44) and (1.45)).
Unanticipated observations are emphasized by {�ϑt}. The equations of evolution
of the modal-state estimate are highly nonlinear.

The base-state estimate includes terms like those found in the Gφ
t -Kalman filter.

The state matrix, Ai , includes both the intramodal state matrix, Ai , and a contribution
from the state discontinuity event,

∑
l Qil M(i, l). Formal inclusion of the disconti-

nuity into aGφ
t -Kalman filter would suggest a term

∑
i Ai xφi dt . Were we to neglect

the correlation of zygostate errors, the base-state extrapolation might be expected to
include

∑
i Ai x̂ φ̂i dt . However, the geometry of base-state×modal-state induces

correlations, and the PME identifies the proper extrapolation to be
∑

i Ai Rxφi dt .
When the modal estimate is a good one (Pxφ ≈ 0),

∑
i Ai Rxφi ≈

∑
i Ai x̂ φ̂i , and the

PME mimics the Kalman filter.
The actuating signal makes a twofold contribution to dx̂ t . By analogy with the

Kalman filter, we would anticipate the contribution from the regulating signal would
be a term

∑
i Bi ut φ̂i dt = B̂t ut dt . This term does in fact appear in the PME . The

influence of failure to apply the proper feedforward actuation is harder to intuit
from the Kalman filter since this issue is ignored in the LGM model. The term∑

i BiυPφφi quantifies this effect. When the modal estimate is a good one (i.e.,
the sum is near zero), the feedforward contribution is negligible. Indeed, when the
modal estimate is good, (2.25) is identical to (1.18).

The correction attributable to the base-state measurement is like that found in
the Kalman filter with the not surprising difference that Pxx in the Kalman filter is
replaced by Pxχ (Pxχ = Pxx + Pxφχ

′). The update attributable to the modal mea-
surement,�x̂ t = Pxφ�ϑt , has no analogue in the Kalman filter, though again if Pφφ

(and hence Pxφ) is small, this correction is negligible. In summary, the base-state
estimator in the PME is of essentially the same complexity found in the Kalman
filter and in fact reduces to the Kalman filter during extended modal sojourns when
the regime identification has been accomplished.

The equation for the base-state error covariance has both anticipated and un-
foreseen terms. The base-state measurement reduces the error covariance in both
the Kalman filter and the PME (−γx Rxγ

′
x dt), though γx has a slightly different
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definition in the PME . Equation (1.19) contains a term related to the plant noise,∑
i Rχ(i)φi dt , which is replaced in the PME by its mean

∑
i Rχ(i)φ̂i dt (as ex-

pected). The Kalman filter contains another term,
∑

i Ai Pxxφi dt . The PME re-
places Ai with Ai (as expected). It is harder to intuit what moment would replace
Pxxφi . (It is P(xφi )x .) During long modal sojourns when the intercategory correla-
tions are small,

∑
i Ai P(xφi )x ≈

∑
i Ai Pxx φ̂i .

The error covariance in the Kalman filter has no control dependence because the
actuating signal introduces no additional uncertainty. ThePME has two such terms.
The first is related to the uncertainty in the control matrix:

∑
i Bi ut Pφi x dt . If the

control matrix is not mode dependent (Bi ≡ B),
∑

i Bi ut Pφi x = 0, or if the mode
is known with confidence,

∑
i Bi ut Pφi x is small. The second term is related to the

feedforward signal:−∑i BiυP(φ̃φi )x dt . This term becomes small under conditions
of modal certainty as does the control aggregate.

Another term appearing in d Pxx is
∑

i,l Qil M(i, l)Rxxφi M(i, l)′ dt . This positive
contribution has no analogue in the Kalman filter but can be likened to pseudonoise.
A similar replacement, called the white-noise equivalent of the discontinuity, has ap-
peared in algorithms developed for applications of this type. However, the term used
in thePMEdiffers from a white-noise equivalent in that it is directional (M(i, l)), de-
pendent on the likelihood of a modal transition (Qil), and data dependent (Rxxφi ).
When the mode is identified with confidence (φ̂t ≈ ei ), this discontinuity term
becomes∑

i,l

Qil M(i, l)Rxxφi M(i, l)′ dt ≈
∑

l

Qil M(i, l)Rxx M(i, l)′ dt.

Despite the fact that {Pxx} is a PD-process, {Rxxφi } (and hence {Pxx}) is not Zt -
adapted.

The modal update does not appear in the Kalman filter. The increment in the
base-state estimate is reflected in a correction in Pxx : �Pxx = −�x̂�x̂ ′ + (·).
There is another term that relates the modal measurement to {Pxx} though a third
mixed moment: �Pxx = (·)+∑k Pxxφk�ϑk . Again it should be noted that when
the regime is known, these corrections become small. When φ̂t ≈ ei ,

d

dt
Pxx = Ai Pxx + Pxx A′i − γx Rxγ

′
x + Rχ(i)+

∑
l

Qil M(i, l)Rxx M(i, l)′

(compare (1.19)).
There is no equation for {Pxφ} in the Kalman filter. The base-state, modal-state

covariance appears in the base-state estimation algorithm as a gain for the modal
measurement update. It appears in the base-state error covariance as a factor in the
term related to the regulating signal. The base-state measurement reduces the cross
covariance much as it does in the Kalman filter (−γx H Pxφ dt). Equation (2.27)
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contains no term related to the plant noise, but this is replaced in the PME by a
term related to the jump probabilities (Pxφ Q dt). The collection,

∑
i (Ai P(xφi )x +

Bi (ut Pφiφ − υP(φ̃φi )φ
)), has the form of an analogous term in Pxx . The modal

update in {Pxφ} is the analogue of that found in {Pxx}. When φ̂t ≈ ei ,

d

dt
Pxφ = Ai Pxφ − γx H Pχφ + Pxφ Q +

∑
l

Qil M(i, l)x̂e′l .

The PME is not a small-noise approximation to the optimal nonlinear filter: In
high SNR environments, ad hoc modifications of the Kalman filter suffice. The
PME is unique in the way it integrates the nonlinear state dynamics into the esti-
mates. For example, if the correlation between the state categories is ignored along
with the influence of the control, (2.25) reduces to d

dt x̂ t = Ât x̂ t + γx ν̇x , with the
equation for {Pxx}matching the Kalman filter with “average” dynamics. However,
the PME does utilize the geometry of the state path. In this way, the base-state error
covariance is contingent upon both the estimated base-state path and the modal
sequence. The PME neither averages the {φt} paths nor treats {φt} as additive.
The correlations between errors in estimating the base- and modal-states are used
directly to update the base-state estimate. This modal measurement to base-state
update is possible only because the relevant second moment is computed as part of
the PME .

In many applications, the base-state observations are discrete: (y[k] = Hχ [k]+
n[k]; E[n[k]n[k]′] = Rx > 0). The PME can be adjusted to accommodate these
measurements as is done in the Kalman filter. Between observations theGt -moments
are extrapolated without dependence on the base-state observation (Rx = ∞). At a
base-state measurement there is a correction. Observe that E[(dνx)dν ′x |Gφ

t ]/ dt =
Rx for continuous observations and E[�νk�ν ′k |Gφ

t ] = H Pχχ H ′ + Rx for discrete
observations. In the PME with time-discrete base-state measurements, the gains
are modified: γx = Pxχ H ′(E[(dνx)dν ′x |Gφ

t ]/ dt)−1 for continuous observations;
γx = Pxχ H ′E[�νk�ν ′k |Gφ

t ]−1 for discrete observations. To implement the PME

with discrete measurements, the same replacements will be made.

the PME: time-continuous plant; time-discrete measurement

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

M1(i),
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d

dt
Pxφ =

∑
i

(M2(i)+ N2(i))+ Pxφ Q,

d

dt
Pxx =

∑
i

(M3(i)+ M3(i)
′ + N3(i)+ Rχ(i)φ̂i ).

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ =−�x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx =−�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk .

At a base-state observation:

�x̂ = γx�νx ,

�Pxφ =−γx H Pχφ,

�Pxx =−γx(H Pχχ H ′ + Rx)γ
′
x .

coefficient identities for the PME with time-discrete observations

γx = Pxχ H ′(H Pχχ H ′ + Rx)
−1,

M1(i)= (Ai x̂t + Bi ut)φ̂i + Ai Pxφi − BiυPφφi ,

M2(i)= (Ai x̂t + Bi ut)Pφiφ + Ai
(

Pxφφi + Pxφφ̂i
)

−BiυP(φ̃φi )φ
,

N2(i)=
∑

l

Qil M(i, l)Rxφi ,

M3(i)= (Ai x̂t + Bi ut)Pφi x + Ai
(

Pxxφi + Pxx φ̂i
)

−BiυP(φ̃φi )x ,

N3(i)=
∑

l

Qil M(i, l)Rxxφi M(i, l)′.



3
Situation Assessment

3.1 Introduction to Situation Assessment

An abridged version of the polymorphic estimator was presented in Chapter 2. The
PME is a finite-dimensional algorithm for generating the Gt -conditional mean of
the zygostate along with several moments that are interesting in their own right.
The plant dynamics of the hybrid system are partitioned into a base-state, modal-
state pair, and the observation has a compatible partition. In this chapter we will
focus on the modal-state measurement subsystem in which the measurements are
discrete.

The specific application to be considered is the study of situation assessment
by human decision makers. Many geographically distributed systems include both
human decision makers and a diverse collection of sophisticated hardware/software
subsystems. With the unavoidable errors and distortions in data accumulation, trans-
fer, and presentation, it is difficult to determine the appropriate human role, or even if
the decision maker is properly filling the role given him. Athans referred to decision-
making systems as “event driven” and observed that “the state variables . . . are both
continuous and discrete” [Ath87]. In Athans’s partitioning of the comprehensive
state space, the discrete states represent global (or meta) states that modulate the
local (or micro) aspects of the task environment. The decision maker’s reaction to
local phenomena tends to have a reflexive quality. It is in this reaction to macroevents
that particularly human idiosyncrasies are manifest.

A primary task for a decision maker is to identify changing circumstances in an
environment characterized by noise and clutter. This is called situation assessment
and on its basis the decision maker takes actions or reports conclusions. The cen-
trality of status identification is explicit in the recognition-primed decision-making
(RPD) paradigm in which situation assessment is taken to be the primary cognitive
task of the decision maker [Kle89, Kle91]. In RPD it is supposed that once the cur-
rent status has been identified, the appropriate response is known by the decision

56
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maker from training and experience. RPD is based on the observation that human
decision makers rely “on their abilities to recognize and appropriately classify a
situation. Once they knew it was ‘that’ type of case, they usually also knew the
typical way of reacting to it” [Kle89].

Creating a model flexible enough to represent the diverse population of human
decision makers is difficult; decision makers have different styles, training, and
temperament. The metastates are evolving variables. For example, if the meta-
state space is {friendly, hostile, neutral}, a situation classified as neutral for a
period can suddenly become hostile. The metastates are also decision maker spe-
cific in a way that conventional system states are not. Position and velocity are
objective quantities, but a situation that is hostile for one decision maker may
be neutral to another. Hence, the metastate labels are descriptive, but they are
neither absolute nor preestablished. Similarly, the decision maker perceives the
tempo of an encounter both objectively and subjectively. The trained decision
maker is expected to perform in diverse environments and over a wide range of
scenarios. Realistic tests involving professionally trained decision makers are dif-
ficult to design and are costly to implement. The proper personnel are often not
available when needed and are expensive when so utilized. This lack of authen-
tic experimental capability precludes the multifaceted testing of different system
configurations that are so common in electro-mechanical system design. Lacking
empirical data, plausible, but ad hoc, system configurations are used all too fre-
quently.

The PME can be used to create an analytical model of a decision maker perform-
ing a situation assessment task in a context requiring hierarchical processing. The
modal-state estimation algorithm is a simple but formal description of the cognitive
dynamics of a decision maker engaged in a task requiring situational identification
in an environment containing considerable perceptual ambiguity, equivocal mea-
surements, and sudden temporal change. In this modeling paradigm, the decision
maker is viewed as comparing unprocessed observations with those predicted on
the basis of a set of internal expectancies. He associates his current status with that
model in a parametric family of models that most closely matches the anticipated
with the actual observations.

The PME quantifies the dynamics of situation recognition within a natural taxo-
nomy: complexity, tempo, and uncertainty. The complexity of a engagement is given
by the number of alternative situational hypotheses (the metastates) acknowledged
by the decision maker; the tempo is the pace of the metastate change, and uncertainty
is related to the distinctiveness of the observation–metastate coupling. For example,
a ship may engage a target. The target may be classified as friendly (metastate 1),
hostile (metastate 2), or neutral (metastate 3). The prefix “meta” indicates that the
state is classificatory. For each element in this trichotomy, it is the decision maker’s
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subjective sense of the situational environment that is determinative rather than the
objective environment. The confidence with which a decision maker responds to
data depends upon the quality of the observation: both objective quality (determined
by the available decision arts) and subjective (influenced by training, stress, and the
credence the decision maker gives to his or her data source).

Experiments precluded by expense and scheduling must be replaced by sim-
ulation. Unfortunately, determining a tractable model of human decision maker
response is difficult. This is due in large part to the fact that decision makers exhibit
a wide range of behaviors as their tasks and operating environments change. In this
chapter, we will explore the use of the PME in decision maker modeling.

3.2 Decision Maker Dynamics

In [SCK93], a simple mathematical model was proposed as a tool for quantifying
the response of a human decision maker in a multimodal engagement. This work
was based upon the aforementioned taxonomy in which the decision-making envi-
ronment is quantified on the basis of tempo, uncertainty, and complexity [Vau90].
This partitioning is abstracted as follows:

complexity: A rational decision maker aggregates his environment in terms
of a restricted taxonomy of metastates. These metastates form a set of
alternative hypotheses concerning the status of the assigned task. Dif-
ferent decision makers partition their metaspace differently, and a given
decision maker interprets his situation within his personal set of alterna-
tives. Enumerate the hypotheses: {1, . . . , S} = S, and denote the current
metastatus with a unit vector φt = ei if the i th metahypothesis is true
at time t . An untrained decision maker will recognize few situations
(S is small), whereas a trained individual can deal with a greater num-
ber. Hence, task complexity (the dimension of φt ) has both objective
and subjective components and is influenced by both experience and
training.

tempo: The tempo of a decision-making task describes the pace at which
metastate changes occur. Suppose that {φt} is a Markov process with
S × S transition rate matrix Q. As with complexity, tempo is both ob-
jective and subjective. Even if the objective tempo is such that there
are no changes in the metastate (Q= 0), the subjective sense of tempo
may admit variation. For example, when the decision maker devalues
old observations by comparison with current ones, he is acting as if
the situational status could change even when he knows objectively
that it cannot: When the metastate is known to be unchanging, the
decision maker may still act as if it had a finite lifetime. Particularly
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under stressful conditions, this bias toward recent observations has been
remarked upon.

uncertainty: The uncertainty regarding {φt} is resolved by the deci-
sion maker from spatiotemporal observations. It is accepted that “sen-
sory data are decomposed into simpler elements concerning various at-
tributes, which are analyzed and subsequently correlated by hierarchi-
cal processes of discrimination, recognition and classification” [Lig88].
To quantify the quality of an individual observation, suppose that each
metahypothesis is associated with a perceptual signature by which it is
identified; for instance, corresponding to φt = ei there is an associated
measurement mark. The distinctiveness of the signature measures how
easily the hypothesis can be identified from the observation. Note that
this signature is as subjective and as idiosyncratic as the partitioning of
the metastate space. A trained observer can detect and interpret nuances
in a scene that completely escape the novice; the same objective stim-
ulus will be weighted differently by different decision makers. Further,
the strength of the signature may change as the encounter evolves. For
example, an increase in decision maker stress may result in a coarser de-
composition of the cognitive metaspace and a weaker response to stimuli,
leading to a related change in the input–output behavior of the decision
maker.

In the PME this is abstracted as follows:

metastate model

dφt = Q′φt dt + dmt , (3.1)

metastate measurement

dzt = λPφt dt + dηt . (3.2)

The process {ηt} is an Ft -martingale. The predictable quadratic variation is given
in the Appendix 1 (see (A1.4)): d〈η, η;Gt 〉t = Rφ dt ; Rφ = diag(λ̂t)> 0. With a
single source of measurement, the observation filtration is {Zt}.

The equation for the modal estimate is given in (2.23) and (2.24). The observation
is first modified to create the piecewise constant process {ϑt} with increments

�ϑt = h
(
λ̂
−1
t ∗�zt

)
,

where λ̂
−1
t is interpreted componentwise. The equation for the metastate probabi-

lities can then be written as shown:
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metastate probability

Between metastate measurements:

dφ̂t = Q′φ̂t dt. (3.3)

At a metastate measurement:

φ̂t
+ = φ̂t

− ∗�ϑt . (3.4)

3.3 Order Bias in Human Decision Makers

An interesting empirical study illustrating a particular difficulty in decision maker
modeling is presented in [AB91]. Adelman and Bresnick used a realistic experi-
mental environment to test the way the order in which observations are received
influences a decision maker’s identification of his situational status. Trained air de-
fense officers were placed in front of Patriot training simulators and were asked to
classify a target as friend or foe. An officer was given five observations relating to
the status of the target. An initial category measurement was made at target appear-
ance. After an interval, the officer received an automatic friend-or-foe electronic
(IFF) transmission. Further, the initial portion of the target path reflected on the
nature of the target. These three data points were called the early-order data. Later,
as the target approached the asset defended by the Patriot system, the observed
path and the occurrence of jamming (or lack thereof) gave two more observations
(late-order data) reflecting on the status of the target.

In the experimental protocol, the indicated observations could be received by
the officers as a sequence of five individual data points, or it could happen that
points two and three appeared simultaneously (early-order coincidence), and sim-
ilarly with points four and five (late-order coincidence). Because of ambiguity in
the observations, none of the elementary measurements was individually conclu-
sive; each observation could correspond to either of the underlying hypotheses.
Along with their other tasks, the subjects were asked to judge the likelihood that
the target was friendly after each observation, and again at the conclusion of the
exercise.

This experiment is interesting because of its naturalistic setting and the use of
trained and motivated subjects – not student volunteers. The issues involved are
concisely stated in [AB91]:

There is substantial basic research . . . demonstrating that people use heuristics
. . . to make many judgments and decisions . . . . For many tasks, these heuristics
can result in systematic biases or errors in judgment.



3.3 Order Bias in Human Decision Makers 61

Adelman and Bresnick proposed that

when information is presented sequentially and a probability is obtained after each
piece of information, people make new estimates by first anchoring on the current
position, and then adjusting it by the degree to which the new information confirms
or disconfirms this position. Moreover, the Hogarth–Einhorn model predicts that
the greater the anchor, the greater the impact of the same piece of disconfirming
information. For example, the higher ones probability that an unknown aircraft
is a friend, the greater the negative impact of new information indicating it is
a foe. Conversely, the smaller the anchor, the greater the impact of the same
confirming information. Consequently, the order in which the same confirming
and disconfirming information is sequentially presented is predicted to result in
different final probability estimates.

Because the full data set is identical for any order of presentation, this effect (called
order bias) is seen by many investigators as an egregious behavior, and one to be
minimized if possible. After all, the final conclusion on whether to engage the target
should be based upon the totality of measurements, and the order in which they are
received should be superfluous.

Figure 3.1 portrays order bias in a decision maker. The probability that the target
is friendly is labeled sanguinity in the figure. Suppose the target is initially thought
to be more likely to be friendly. This is indicated by an initial sanguinity of 0.6.
If the initial observation indicates friend (F shown in the figure with the icon )
the sanguinity indicator moves to 0.8, and a subsequent disconfirming observation
(hostile H with icon ) moves sanguinity to 0.5. Alternatively, the (H,F) sequence

Figure 3.1. Sanguinity for observations F and H.
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produces the lower curve in Figure 3.1, ending with a sanguinity of 0.7. Despite the
fact that the status of the target does not change during the period, and the objective
data are identical, the final appraisals differ with (H,F) being more strongly favorable
to a nonthreat than is (F,H).

Figure 3.1 is a pictorial representation of the information order bias as described
in the reference. Does order bias reveal a flaw in the way in which a trained de-
cision maker integrates information, or is it a more basic behavioral characteristic
of a decision maker in an ambiguous situation? Furthermore, if it is accepted as
an authentic peculiarity of human response, can it be effectively delineated within
existing modeling paradigms? Although order bias is an important issue and its
quantification warrants considerable experimental effort, the expense of creating
the environment described in [AB91] was considerable. The experiments them-
selves were difficult to control; for example, “despite all efforts of the participating
personnel, two pieces of information (instead of one) appeared on the Patriot display
at critical times prior to obtaining the participant’s judgment” [AB91]. Because of
the difficulties in carrying out the experiment (restricted though it was), Adelman
and Bresnick could not explore the full variety of possible order effects that are of
interest, and what is perhaps even more important, they were unable to examine
the sensitivity of decision maker response to improved sensors and decision aids.
Thus, it is of interest to see whether this (apparently irrational) order-bias behavior
can be captured within the strict formalism of the PME.

The observations are generated in sequence and are so labeled. Because of errors
in generation and interpretation, the observation marks are not a perfect indication of
condition; the Fmark may be assigned to either friend or foe, but the former is more
likely. To abstract the experiment, note that the status of the tracked object will not
change during the engagement. It does not follow, however, that (the subjective)
Q = 0, because the metadynamics are operator specific to a degree. Time can
be normalized by setting the observation rate equal to one. The quality of the
measurements is given by a discernibility matrix, P. For the case under study
there are only two metastates and two observation marks: friendly and hostile. The
discernibility matrix for the i th measurement is 2× 2:

Pi =
[

ai 1− bi

1− ai bi

]
, (3.5)

where ai = Pi (1, 1) = P(F | friend) – with 1 − ai = P(H | friend) – and bi =
Pi (2, 2) = P(H | foe). Suppose initially that the decision maker has the same
confidence in each observation; that is, Pi ≡ P. This invariance restriction will be
relaxed later.

On the basis of the observation sequence, the decision maker generates an as-
sessment of the status of the engagement: P(φt = ei | Zt). In particular, (φ̂t)1
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is sanguinity in Figure 3.1. The PME has two free coefficients in Q (temporal
freedom) and two free coefficients in P (observation freedom). Unfortunately, the
sequential test of operator confidence performed in [AB91] is not sufficiently de-
tailed to resolve the model uniquely. Because of the asymmetry noted in the exper-
iment, an unbalanced confidence matrix will be used: a = 0.68 and b = 0.77; the
probability of correctly interpreting a friendly target as such is 0.68 from a single
observation.

This particularization of thePME requires only that Q be determined. If the deci-
sion maker expects the mean sojourn time in each metastate to be equal, this reduces
to specifying the single parameter, Q11. In [AB91], it was noted that the sequence
(F,F,F,F,F) yields a sanguinity index of (φ̂1) of 0.91, while (H,H,H,H,H) yields
sanguinity index of 0.12. Selecting Q11 = −0.2 (mean sojourn in a metastate is 5),
we show in Figure 3.2 the situational assessment graph for these two observation
sequences.

Before considering order bias in this setting, it should be noted that the “update
gain” in (3.4) uses the predictable version of {φ̂t}: the value just before the obser-
vation. Predictability is a mathematical embodiment of decision maker anchoring.
As the decision maker’s confidence increases, the gain multiplying a confirming
observation decreases. This effect is shown clearly in Figure 3.1, which was ac-
tually generated from Equations (3.3) and (3.4). Starting from a weakly favorable
condition (φ̂1 = 0.6), the upper curve shows the sequence confirm friend (F),
disconfirm (H). Because the (F,H) sequence moves first into a high-φ̂1 (low gain
to a consequent F) region of the metaspace, the gain is higher for the subsequent
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Figure 3.2. Sanguinity for two observation sequences: F, F, F, F, F and H, H, H, H, H.
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disconfirm (high gain to the H actually received) than it would otherwise be. The
reversed ordering of the same data, (H,F), moves the metastate down first, and
the gain for the subsequent confirm is much higher. This results in the higher net
increment in sanguinity as compared to (F,H).

Simultaneous receipt of data appears to violate the dynamic hypotheses that un-
derlie thePME. It could be argued that multiple measurements are always separated
by an nonzero interval, and they can therefore be treated sequentially. This is done in
Kalman filtering applications in which a vector observation is reformed as a set of se-
quential scalar observations with a concomitant reduction in signal processing com-
plexity. However, such an approach ignores hominal anchoring. The decision maker
perceives propinquitous measurements as being simultaneous even when there is
some minimal separation; the value of {φ̂t} is not updated between near coincident
observations. The PME can be modified to account for coinstantaneous observa-
tions by enlarging the range space of {�zt}. For example, the observations could
be ordered: e1 = F, e2 = FF, e3 = FH, e4 = HH, e5 = H. A plausible P would be

P = 0.5


a 1− b
a2 (1− b)2

2a(1− a) 2b(1− b)
(1− a)2 b2

1− a b

 .

In these terms it is possible to model some of the composite order-bias effects
found by Adelman and Bresnick. Figure 3.3 shows the graphs of three observation
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Figure 3.3. Effect of observation order in the F,F,F,H,H sequence.
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sequences, each using the same objective measurements: (F,F,F,H,H), (F,H,H,
F,F), and (F,FH,FH). Each sequence has an initial friend (F). This is followed
with two confirming (F) and two disconfirming (H) observations. The recency effect
on sanguinity is apparent. The (H,H) sequence has strong influence if received
late in the interval, but the influence is much less when received earlier. Indeed,
the two sequential patterns led to different final conclusions: (F,F,F,H,H) ⇒
hostile target, (F,H,H,F,F) ⇒ friendly target. Human anchoring is also seen
when the observations are presented simultaneously. In this case the decision maker
retains a vestige of his initial view that the target is friendly, but it is weakened by
the contradictory data. Although operational difficulties prevented Adelman and
Bresnick from examining the range of composite experiments discussed here, these
results agree with the general thrust of those presented in the reference.

In the experiment, the target type does not change. The objective tempo is given
by Q = 0; a friend remains a friend and so too a foe. The true Bayesian solution for
this exercise is given by (3.3) with Q = 0. Figure 3.4 shows observation sequences
as given in Figure 3.3: F,F,F,H,H and F,H,H,F,F along with the Bayes prob-
abilities for each sequence. As expected, the Bayes solution does not exhibit order
bias; after the five observations, the sanguinity is 0.8 for either observation se-
quence. Indeed, the Bayes solution path is close to the PME path for the sequence
F,H,H,F,F. However, the PME and the Bayes solution paths differ significantly
for the observation sequence F,F,F,H,H. The reason for this anomalous behavior
lies in the observation dependence of the gains in (3.4). As φ̂1 nears 1.0 (or 0.0) the
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Figure 3.4. A comparison of the PME with the Bayesian estimate for the observations
F,F,F,H,H.
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gain of the Bayes update is small – an effect oft noted in Kalman filters with small
process noise. This is apparent in Figure 3.4 near observation 3. With the small gain,
the Bayesian assessment of target type is much slower to respond to the finalF,F ob-
servations than is thePME. This leads to a large order bias after the final observation.

One measure of the utility of an observation is the degree to which it reduces
decision maker confusion. A quantitative indication of situational uncertainty is
obtained from {Pφφ}. To illustrate the utility of the PME in ranking observation
quality, consider again the Adelman and Bresnick experiment. The individual ob-
servations came from different sources and were not equally diagnostic. A more
faithful model of this experiment would use a different Pi for each measurement.
This modification is simply incorporated into the PME. Unfortunately, the data
presented in [AB91] is not sufficiently detailed to particularize the {Pi } with con-
viction. However, the effect of the variability of the discernibility matrices can be
illustrated by letting the sequence of confidence matrices change in concert with
the type of observation; for example, the IFF measurement would yield one Pi ,
whereas the early-order path measurement would yield another.

To illustrate the consequences of having measurements with different discerni-
bility matrices, consider the early-order observation sequence (F,F,F). Suppose
that P1 is as before, but observation two (respectively observation three) is more
accurate than observation three (respectively observation two). The discernibility
matrix for the i th observation is given by (3.5) where i ∈ {1, 2, 3}. To normalize
the results, suppose that a2

1 = a2a3 and b2
1 = b2b3; improved acuity in one mea-

surement is balanced by degraded acuity in the other. To avoid singularities with
a1 = 0.68 and b1 = 0.77, a2 and b2 must be restricted in range: a2 ∈ [0.5, 0.92]
and b2 ∈ [0.59, 1.0].

Figure 3.5 shows a graph of var(φ1), called decision maker uncertainty, from
its initial state of low confidence (var(φ1) = 0.25). Two cases in which the deci-
sion maker receives the same (F,F,F) sequence are shown in Figure 3.5. The
lower curve shows decision maker uncertainty for the confidence matrices: {ai } =
(0.68, 0.92, 0.5), {bi }= (0.77, 1.0, 0.59). This sequence has the high accuracy mea-
surement first with the lower accuracy one next (labeled HIGH-LOW). The upper
curve reverses the measurements sequence: {(ai , bi )} = {(0.68, 0.77), (0.5, 0.59),
(0.92, 1.0)} (the LOW-HIGH sequence). The differences in operator doubt are ap-
parent. The second measurement in the high-low case is not a flawless indication of
friend, but it is flawless in indication of foe. Hence, the second F eliminates deci-
sion maker uncertainty by picking friend with high probability. However, operator
recency causes doubt to grow between observations 2 and 3, and the final F is of
such low quality that it avails little. The same observation sequence with different
confidence matrices gains little from the second F, but it finds the third (high qual-
ity) F compelling. The decision maker ends the experiment sure that the object is
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Figure 3.5. Decision maker doubt is related to accuracy order.

friendly. (The curve is not shown, but sanguinity for LOW-HIGH� sanguinity for
HIGH-LOW.)

The variation in operator uncertainty shown in Figure 3.5 mimics an anomalous
behavior noted parenthetically by Adelman and Bresnick. They found that some
operators engaged a target (decided it was hostile) before the full data set had been
received. An “out-in” path was a strong indication of hostile intent, especially if
it occurred in the late-order data. “Even though (the) participants later said the
aircraft was a friend after it had returned to the safe-passage corridor, they would
have long since shot it down” [AB91]. Precisely this kind of effect is indicated
by the HIGH-LOW curve of Figure 3.5, in which the PME expresses complete
confidence that the target is friendly at observation 2, only to waiver later. The
supposition in the PME that the decision maker operates as if the time horizons
of the metahypotheses were relatively short is confirmed in the decision maker’s
engagement policies. What some perceive as visceral behavior patterns are made
quantitative in the PME and are made explicit in Figure 3.5.

3.4 Multilevel Situation Assessment

In the previous section, the modal-state estimation algorithm of the PME was gen-
eralized to include situations in which the discernibility matrix varies with the
observation number and the dimension of the observation differs from the dimen-
sion of the modal state. These generalizations were sufficiently direct that there
was no need to carefully review the development presented in the appendix. Let
us consider a more subtle generalization of the modal estimator. As pointed out
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earlier, the PME quantifies the dynamics of situation recognition within a natural
taxonomy. The complexity of a engagement is given by the number of alternative
situational hypotheses acknowledged by the decision maker; the tempo is the pace
of the metastate change; and uncertainty is related to the distinctiveness of the
observation–metastate coupling. For each element in this trichotomy, it is the deci-
sion maker’s subjective sense of the situational environment that is determinative
rather than the objective environment.

When the situational framework within which an engagement takes place is mul-
tifaceted, a decision maker will often identify his situation sequentially at different
levels of detail. Initially, he tries to determine his status within a coarse partitioning
of his metaspace and ignores the fine structure. Once he is confident of the coarse
level assessment, he will attempt to refine his assessment. The framework presented
in Section 3.2 can be adjusted as follows:

complexity: As before, the situational state space is simply the union of
the S canonical unit vectors in RS: φt ∈ {ei ; i ∈ S}. However, when
the number of metastates is large, a decision maker will simplify his
metaspace by grouping collections of metastates into a smaller number
of higher level groups called metastate aggregates (MSAs) (e.g., Ai =
∪ j e j might be the i th MSA where j runs over an appropriate index
set). For example, in a tracking context the MSA hostile-platform would
include a variety of threats. Letαt be an indicator of the MSA at time t ;αt

is a canonical unit vector in Rk where k is the number of MSAs. The MSA
can be written αt = Cφt , where Ci j = 1 if φ j ∈ Ai and 0 otherwise.
Note that the {Ai } need not be disjoint at the phenomenological level:
The same situational hypothesis can exist under more than one rubric.
To accommodate this potential ambiguity, an elemental metastate will
have multiple designations, one for each MSA in which it is classified.
Although not a state variable in the strict sense, αt will be called the
MSA-state.

tempo: The metastates may change in the course of time. The pace of
change is quantified by the frequency and sequence of metastate tran-
sitions. For the purposes of this section it will be supposed that the
current MSA modulates the metastate dynamics and that changes in the
MSA are independent of the realized metastate within an MSA. More
specifically, suppose that in the collection of MSAs, {Ai ; i ∈ k}, the i th
aggregate has N (Ai ) elements. By construction, the dimension of the
metaspace satisfies

∑
i N (Ai ) = S although there may be some redun-

dancy in the metastates. Let the individual unit vectors be ordered in
accord with the {Ai } (e.g., {e1, . . . , eN (A1)} are associated with A1 and
so on). With this ordering, C will be block diagonal.
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The decision maker perceives tempo subjectively and quantifies it in
a manner compatible with the metastate–MSA decomposition. If the
MSA is fixed (e.g., αt = ei ), the metastate evolution will be represented
with a Markov process whose state space is necessarily restricted to
the metastates contained within the MSA (e.g., e j ∈ Ai ). As each of
the MSAs are considered in turn, there is generated a set of k transition
rate matrices, {Qi ; i ∈ k}, which describe the intra-MSA variation of the
metastates. An individual Qi -matrix describes the local tempo within a
single MSA. The collection, {Qi ; i ∈ k}, gives the dynamics of a set of
isolated processes – ones having no mixing between different MSAs.

The MSA may also change during the course of an engagement:
Changes in the MSA are produced by those transitions that take {φt}
out of one local domain and place it in another. Suppose these higher
level transitions are themselves represented by a Markov process. Since
there are k distinct MSAs, this higher level process is parameterized by a
k×k mixing matrix Qm . The tempo of the composite encounter is formed
from blending the local ({Qi ; i ∈ k}) and global (Qm) dynamics. This
compound description of the metastate process delineates motion within
an MSA and transitions across MSA boundaries. The metastate process is
still Markovian and has an S× S generator Q′, which can be found using
conventional methods. In combining {Qi ; i ∈ k} and Qm certain natural
constraints must be observed. For example, if em ∈ Ai is phenomeno-
logically identical to en ∈ A j , an em �→ en transition is prohibited: If
the intrinsic situational hypothesis does not change, the decision maker
would not have cause to relabel the metastate in another MSA. For con-
venience, it will be supposed when an MSA transition occurs (ei �→ e j ),
the metastate is equally likely to occupy any permissible location in A j .

To use the PME in this application, the structure of the discernibility
matrix must be generalized. The decision maker perceives objective data
in a subjective manner. The discernibility matrix is not fixed but itself
depends on the decision maker’s observations. If the decision maker is
sure of his MSA, he will use the detail in his observation to distinguish
alternatives within the MSA. Alternatively, if unsure of his MSA, he will
use coarse processing to aid in MSA classification.

In an ambiguous environment, a decision maker first attempts to de-
termine the proper Ai . Until αt can be deduced with surety, he makes
little attempt to isolate φt within its MSA. However, as the uncertainty
regarding his high level status is reduced, he will begin a process of
disaggregation; that is, he will attempt to determine the proper e j ∈ Ai .
This hierarchical information processing is called progressive deepening
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in situation assessment. When a change in the metastates is such as to
cause {φt} to leave the current MSA, the decision maker must return to
his coarse processing mode to determine his MSA anew.

To describe the decision maker’s cognitive process more precisely,
note that an engagement takes the metastate process from unit vector
to unit vector in an unpredictable manner. The decision maker’s convic-
tions regarding the situational status are given by {α̂t} and {φ̂t}. To have a
simple geometric description of this, let Ψ be the convex hull of the unit
vectors in the metaspace: Ψ is an (s−1)-dimensional simplex generated
by the S vertices {ei ; i ∈ S}. From (3.3) and (3.4) it is evident that the
set of all situational assessments (all φ̂t) is precisely Ψ. For this reason
Ψ is called the cognitive metaspace of the decision maker: Ψ represents
the totality of the judgments that the decision maker might have during
the course of the engagement. The vectors in Ψ will be called cognitive
metastates to contrast them with the metastates. The unit vectors that
generate Ψ are the vertices of the cognitive metaspace, and when the
cognitive metastate is near a vertex, the decision maker is sure of his
situational status.

Multiplication of the decision maker’s cognitive-metastate vector by
C yields the cognitive-MSA state α̂t . Define by Ψα the cognitive MSA
state space of the decision maker: It is the (k − 1)-dimensional simplex
generated by the k vertices {ei ; i ∈ k}. A vertex in Ψα is the projection
of a boundary set in Ψ formed as the convex hull of the unit vectors that
make up the particular vertex. This set in Ψ will be called an Ai -face
if the unit vectors forming it generate Ai . Thus at the MSA-level, status
recognition could be described as being on the correct Ai -face (∈ Ψ) or
at the i th vertex (∈ Ψα).

To illustrate the geometric structure of the cognitive metaspace, con-
sider the situational hypotheses: friendly (e1), hostile (e2), and neutral

(e3). At time t , the decision maker’s cognitive metastate is delineated by
the three numbers: {φ̂i = P(φt = ei ); i = 1, 2, 3}. Suppose the decision
maker aggregates friendly and neutral into nonthreatening. His MSA
state space could be represented as nonthreatening (e1) and threaten-

ing (e2). The decision maker’s cognitive-MSA state is: α̂1 = φ̂1 + φ̂3;
α̂1 = φ̂2. In this case Ψ ⊂ R3 and Ψα ⊂ R2. Figure 3.6 shows the two
cognitive spaces for this simple example. The cognitive metaspace is the
shaded triangle shown in R3. It is the interior of the region bounded by
connecting the three metastate vertices. At any point in time, the cog-
nitive metastate vector is three dimensional, and it lies in the shaded
region. If the decision maker is confident of his metastate identification,
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Figure 3.6. The cognitive metaspace and the cognitive MSA space for the example.

the cognitive metastate vector will be near one of thevertices. If in doubt,
the cognitive metastate will be at a distance from all vertices. The decision
maker could have reservations regarding whether the situation is friendly
or neutral, but he may be sure that it is nonthreatening. In this case, the
cognitive metastate is near the line joining e1 and e3: the nonthreatening
face (A1-face) of Ψ. Though not near a vertex in Ψ, the decision maker’s
cognitive MSA state is near the A1-vertex in Ψα shown in Figure 3.6.

The cognitive metaspace Ψ is the set of all allowable (that is, decision
maker–specific) cognitive conditions in an engagement. The set of all
vertices is the set of all surety conditions at the metastate-level, and the
set of all Ai -faces is the set of all surety conditions at the aggregated
level.† In most realistic engagements, the decision maker will remain in
the interior of Ψ; that is, he is never able to exclude absolutely any of the
situational hypotheses. Still, when relatively near a vertex or an Ai -face,
the decision maker will be described as being “at the vertex” or “on the
face.” When the decision maker is said to be in the central region of Ψ,
it is meant that he is truly puzzled.

uncertainty: A decision maker determines his current status by comparing
his actual observations to those he expects. He interprets an observation
in terms of an MSA (coarse processing) and in terms of a metastate (fine
processing). The aspect that distinguishes this application from those
that preceded it is the hierarchical variability of the discernibility matrix
P. A specific form for P will be used. This choice is motivated by the
fact that when a decision maker is uncertain as to his MSA status, he
looks at the data at a coarse level, and he makes distinctions between

† There are faces of Ψ that are not Ai -faces. There are, for example, boundary surfaces formed
by convex combinations of unit vectors, not all of which come from a single MSA. While such
cognitive states are permissible, the likelihood of finding a decision maker in such a set is slight,
and they are not of concern here. Indeed, because of the labeling convention, the named Ψ-faces
are disjoint, and every vertex is in one named face.
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alternative metastate aggregates. Only after he has completed his high
level partitioning, and he is confident that he has correctly isolated the
appropriate macrostatus, does he deepen his metastate discrimination.

Denote the discernibility matrices associated with the vertices of Ψ
by {Pi ; i ∈ S}. Let the discernibility matrix associated with the interior
of Ψ be labeled Pm . We will quantify cognitive merging by

P =
∑

i α̂
2
i Pi + K4Tr(Pφφ)Pm∑
i α̂

2
i + K4Tr(Pφφ)

, (3.6)

where

Pφφ = cov(φt) = diag(φ̂t)− φ̂t φ̂
′
t

and K4≥ 0 is a distinguishability parameter. The rationale behind (3.6)
is apparent. The nonnegative function K4Tr(Pφφ)→ 0 whenever φ̂t ≈ ei

for some i ∈S. If the decision maker is confident that φt = e j ∈ Ai (i.e.,
α̂i ≈ 1 and Tr(Pφφ)≈ 0), he will interpret his observations according to
Pi . When the status changes, the decision maker first finds that the data
do not confirm the ostensible MSA. Failing to match his expectations at
a local level should change the weightings in P so as to enlarge the set of
metahypotheses under consideration. This first leads the decision maker
to explore other metastates within the current MSA and to consider new
MSAs if need be.

The equation for the modal estimate is still given by (3.4) and (3.5).
The discernibility matrix is now a random process but it is Zt -adapted.
From {φ̂t}, the MSA estimate can be deduced as well:

α̂t = C φ̂t .

3.5 Decision-Making Phenotypes: An Example

Consider the situation having five local metastates (labeled e1 through e5) and
two higher order aggregates (labeled A1 and A2) as shown in Figure 3.7 [SC94].

Figure 3.7. A situation involving five metastates and two MSAs.
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To illustrate the variability of situation recognition on the cognitive state of the
decision maker, suppose that when the decision maker’s cognitive condition is
such that α̂t ≈ e1, his discernibility matrix is approximately P1:

P1 =


.85 .025 .025 .025 .2
.025 .85 .025 .025 .2
.025 .025 .85 .85 .2

0 0 0 0 0
.1 .1 .1. .1 .4

 .

When the decision maker is convinced that φt ∈ A1, he uses his observations
primarily to better isolate his metastate within A1. This cognitive processing is
illustrated in the first column of P1 (corresponding to the event φt = e1):

• the observation will indicate φt = e1 85% of the time,
• the observation will be misclassified within A1 5% of the time,
• the observation will be misclassified outside A1 (within A2) 10% of the

time.
The MSA error rate is 10%, and the error is necessarily an e5 error since e4 is
identical to e3 ∈ A1. Indeed, if the decision maker thinks his metastate is in A1,
he will never classify an observation as being from the metastate e4 (P4. ≡ 0).
Columns 3 and 4 are necessarily identical to indicate the fact that e3 and e4 create
the same observation distribution, but the decision maker interprets the observation
within the A1 framework. Column 5 indicates the perspective of the decision maker
when φt ∈ A2 (αt = e2), but he or she wrongly thinks that φt ∈ A1 (α̂t ≈ e1). Such
observations are seen by the decision maker as both failing to confirm his notion
of the current metastate (the classification across φt ∈ A1 is uniform) and as an
increased probability of a classification in A2 (40%).

Alternatively, suppose the decision maker’s cognitive condition is such that α̂t ≈
e2, and the discernibility matrix is P2:

P2 =


.2 .2 .05 .05 .05
.2 .2 .05 .05 .05
0 0 0 0 0
.3 .3 .8 .8 .1
.3 .3 .1 .1 .8

 .

Again, look first at the first column of P2 (corresponding as before to φt = e1 ∈
A1). Despite the fact that the decision maker’s situation is objectively the same as
that described at the beginning of the preceding paragraph, the conclusions he draws
from the observations (as quantified by P2(., 1)) are much different. If φt = e1,
the observations are classified as
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• correctly indicating e1 20% of the time (instead of 85% of the time),
• in A1 40% of the time (instead of 90% and now making no distinction

among the admissible states in A1),
• in A2 60% of the time (instead of 10%).

The observation is never seen as indicating e3 (instead of never seen as indicating
e4). In this case, e3 receives no weight because e3 is not in A2. Observations not
confirming the MSA are not interpreted at the metastate level except for points in
A1 ∩ A2 (i.e., P2(1, 1) = P2(2, 1) and P2(4, 1) = P2(5, 1)). Columns 3 and 4 are
identical because they correspond to the same objective event, but in contrast to P1,
�zt is interpreted within A2. Columns 4 and 5 quantify the ability of the decision
maker to distinguish the φt ∈ A2 (correctly 90% of the time).

When the decision maker is uncertain about his MSA status, he first will classify
his observations at a coarse level (i.e., a measurement �zt is mapped to A1 or A2)
but the decision maker makes little distinction at the metastate level. The matrix is

Pm =


.25 .25 .2 .2 .1
.25 .25 .2 .2 .1
.25 .25 .2 .2 .1
.125 .125 .2 .2 .35
.125 .125 .2 .2 .35

 .

Suppose again that the decision maker is not sure of his MSA but is actually in
state φt = e1. He will classify his next observation:

• correctly, as coming from A1 75% of the time, with equal distribution across
φt ∈ A1,

• incorrectly 25% of the time (placing the observation in A2).
If φt = e3 or e4, the metastate could be classified in either MSA. That αt = e1 is fa-
vored is a result of the fact that there are more metastates in A1 than there are in A2.
The rest of Pm has a similar interpretation. Note that the first columns of P1,P2, and
Pm all correspond to the same circumstance, but P1(1, 1) = 0.85, P2(1, 1) = 0.2,
and Pm(1, 1) = 0.25: The same objective event (φ = e1 and �zt = e1) is inter-
preted differently at different points in the decision maker’s cognitive metaspace.

To illustrate the situational evaluation problem in a dynamic environment, con-
sider the framework described in Figure 3.7. The tempo of the engagement is
measured by the decision maker’s sense of metastate evolution; its parametric rep-
resentation specifies how fast a particular decision maker thinks the engagement
will develop. For the case portrayed, there are two MSAs (Ψα is of dimension
two) and five (four distinct) metastates (Ψ is of dimension five). The pace of local
change is given by

• a 3× 3 matrix Q1 that describes local behavior within A1,
• a 2× 2 matrix Q2 that describes local behavior within A2.
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The higher level pace is given by a 2× 2 matrix Qm that describes transition
behavior between the MSA state spaces:

Q1 = K1

−1 .6 .4
.6 −1 .4
.5 .5 −1

 ,
Q2 = K2

[
−1 1
1 −1

]
,

Qm = Km

[
−1 1
1 −1

]
.

The transition matrices have a common factor (the bracketed elements), and a
decision maker–specific factor (the coefficients {Ki }). An individual decision maker
sees the engagement as follows. If the MSA is A1, necessarily φt ∈ {e1, e2, e3} and
the mean lifetime in each metastate is the same, 1/K1. Suppose φt = e1. If there
is a local transition, with probability 0.6 the transition will be e1 �→ e2, and with
probability 0.4 the transition will be e1 �→ e3 (i.e., e2 is favored over e3 from e1).
Similarly, e1 is favored over e3 from e2. Since e3 is equally likely to go to either of the
metastates in A1, the metastate is a chain in which the first two states are favored over
the third. The A1-tempo is particularized by K1. The larger K1 is, the more frequent
the decision maker expects the state transitions to be, and the more difficult he will
find them to resolve. In what follows, K1 is considered to be a style attribute. Within
A2 the metastate process is a symmetric chain with sojourn times particularized by
the style parameter K2. Similarly, the tempo of macrochange is particularized by
Km . The comprehensive transition rate matrix Q, the parametric representation of
the situational dynamics as seen by the decision maker, can be determined directly.
Three coefficients, K1, K2, and Km , are sufficient to distinguish the sense of tempo
of the decision maker.

To be more specific, consider the following discernibility matrix primitives within
the context of the sample engagement. The data may come from either a high quality
or a lower quality source. The decision maker may or may not correctly recognize
the source; for example, the objective data source may be of high quality, but the
decision maker’s subjective sense of the quality – and this is what parameterizes
the PME – may be wrong.

High Quality Observations When the decision maker’s cognitive metastate is
on an Ai -face, he will interpret the data according to an Ai -specific discernibility
matrix {Pi : i = 1, 2}. When he is undecided about the MSA, his cognition is better
described by Pm .
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Low Quality Observations As an alternative to the high quality data suppose the
observations are described as indicated below where discernibility matrices are
labeled with the additional subscript p.

Pp1 =


.5 .15 .1 .1 .233
.15 .5 .1 .1 .233
.15 .15 .5 .5 .233
0 0 0 0 0
.2 .2 .3 .3 .3

 .

Pp2 =


.15 .15 .1 .1 .1
.15 .15 .1 .1 .1
0 0 0 0 0
.35 .35 .6 .6 .2
.35 .35 .2 .2 .6

 .

Ppm =


.2 .2 .2 .2 .133
.2 .2 .2 .2 .133
.2 .2 .2 .2 .133
.2 .2 .2 .2 .3
.2 .2 .2 .2 .3

 .

In [SC94], the response of several decision making phenotypes were investigated.
Three will be discussed here. The first, the normative decision maker (NOR), has
a good understanding of the character of the engagement. The novice (NOV) has
the same sense of the situation dynamics as does the normative decision maker, but
lacking training, he is unable to make sharp cognitive differentiations at a metastate
level. The obtuse (OBT) decision maker has the same recognitional skills as the
normative decision maker, but he is not alert to the possibility of metastate change.
Table 3.1 gives the parameters that particularize their representations.

To gain insight into how data accuracy influences decision maker response, con-
sider the following engagement. A decision maker recognizes that a hostile aircraft
is approaching. The aircraft may seek to destroy: Asset 1 (metastate e1) or Asset 2

Table 3.1. Decision maker phenotypes.

MS Tempo MSA Tempo Distinguishability

K1 = K2 K3 K4

Normative 0.05 0.1 4
Novice 0.05 0.1 16
Obtuse 0.0 0.0 4
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(metastate e2) for which the decision maker is responsible; Asset 5 (metastate e5)
for which the decision maker is not responsible; or Asset 3 for which the decision
maker is jointly and partially responsible (metastate e3 if he accepts responsibility
and metastate e4 if he does not). The metastate space is of dimension 5. The deci-
sion maker aggregates e1 through e3 into a threatening category and e4 through e5

into a nonthreatening category. The metastate will change if the aircraft changes
its objective during the engagement.

Two scenarios will be investigated. In both cases, the time interval is [0, 20] s with
observations every second beginning with t = 1 s. At the beginning, the decision
maker thinks that all of the metastates are equally likely. In both scenarios a single
transition occurs in the metastate process at t = 9+ s, and the engagement ends
with the aircraft attacking Asset 1. The decision maker must first reduce his a
priori metastate uncertainty and move toward the appropriate cognitive vertex. The
decision maker must recognize when the asset under attack has changed and identify
the terminal objective.

Scenario 5 Scenario 5 (S5) has a single metastate transition across an MSA bound-
ary. Initially the aircraft begins an approach to Asset 5 (φt = e5; the engagement is
nonthreatening). At t = 9+ s, {φt}makes an e5 �→ e1 transition and commences an
attack on Asset 1. The decision maker’s first 9 observations are associated with e5

with the rest associated with e1. In this prototypical MSA transition, the cognitive
metastate will traverse the interior of Ψ, and the full complement of dynamical
and discernibility matrices will be exercised. The omniscient decision maker sees
variation at both the global and the local level: He would respond to this scenario
with

α̂t = e2 I[0,9] + e1 I(9,20]

and

φ̂t = e5 I[0,9] + e1 I(9,20].

Scenario 2 Scenario 2 (S2) has a single metastate transition within the threatening
face. The aircraft begins an approach to Asset 2 (φt = e2). At t = 9+ s {φt}makes
a 2 �→ 1 transition; the aircraft is still threatening, but the objective is different.
The decision maker’s first nine observations are associated with e2 with the rest
associated with e1. In this vignette, once α̂t ≈ e1, the cognitive metastate will
traverse a boundary region of Ψ (the A1-face). The omniscient decision maker
would respond to this scenario with

α̂t = e1 I[0,20]
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and

φ̂t = e2 I[0,9] + e1 I(9,20].

To better understand the interplay of decision making styles and data quality,
the three decision makers delineated parametrically in Table 3.1 were made exper-
imental subjects. Of particular interest is how performance with good data quality
differs from that with poor data quality. The quality issue will affect some deci-
sion makers more than others and be a factor in some situations more than others.
Another concern is that of objective versus subjective data quality. There are situa-
tions in which the decision maker misapprehends the quality of the data and treats
observations as if they were coming from a source other than the actual one. The
data generation protocol is as follows: If the data quality is good, the first nine data
points in S5 are generated randomly with a probability mass function given by fifth
column of P2 (respectively in S2 they are generated randomly with a probability
mass function given by second column of P1), and the next 11 data points are gener-
ated similarly using the first column of P1. Each decision maker is a subject in each
experiment, and each experiment in a series is independent of the others. An exper-
iment using poor quality data is done in the same way, using the {Ppi } instead of
the {Pi }.

The PME is parameterized by both the individual style of the decision maker
and the decision maker’s conviction on the data quality. To label the different
experimental conditions, the following convention will be used: An experiment
is labeled (scenario)(objective data quality)(subjective data quality); for example,
S5GG. To display decision maker behavior, a sample average of fifty indepen-
dent runs is used to create an “average” response. For each experiment, a plot of
the 50-sample mean of {α̂1} (labeled Pr. of threat) and {φ̂1} (labeled Pr. Asset 1)
is given on [2, 20] s for each of the decision makers. This is an incomplete de-
scription of the evolution within the cognitive metaspace, but the decision maker’s
response is displayed in this way to reduce the detail. These plots give a sense of
the decision maker’s distance from the e1-vertex in Ψ (and the A1-face) during the
engagement.

Experiments S5GG The Asset 5 �→ Asset 1 transition is an event in which the
metastates are identified with different Ai . Figure 3.8 shows α̂1 and φ̂1 for the S5

scenario with good data quality. The decision makers move expeditiously from the
interior of Ψ toward the e5 vertex (not shown). When the aircraft shifts to attack
Asset 1, NOR and NOV move essentially in lock step and identify the aircraft as
a threat at the same time: There seems to be little advantage to NOR’s ability to
disaggregate the MSA. OBT is much slower to identify the MSA. This is for two
reasons. First, OBT has a slower sense of pace than do the other decision makers.
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Figure 3.8. The response of three decision makers in the S5 engagement with the observa-
tions recognized as good.

Additionally, OBT starts the post transition interval in a worse initial state (i.e., the
value of φ̂1(t = 0.9 s) for OBT is smaller than that for either NOR or NOV).

At the metastate level, NOV and OBT have about the same delay with good data,
significantly trailingNOR. Of course,OBT becomes more sure of the targeted asset
as time passes, while NOV has limited ability to disaggregate. S5GG gives a good
picture of NOV: reasonably fast in high level classification, but unable to detect the
nuances in the observation.

Experiments S5GP In the preceding experiment, the objective data quality was
known to the decision maker. This is the normative circumstance in which a well-
trained decision maker is operating in familiar conditions. Stress, sensor degrada-
tion, improper training, etc. may result in the decision maker erring in his evaluation
of the data quality. In this event, the performance curves shown earlier will not be
representative; even with the same tempo, style, and objective data, the response of
the decision maker is contingent on his perception of the data quality. In this sec-
ond experiment, the objective data quality differs from that believed by the decision
maker.

Suppose that the data are good, but the decision maker deems them to be poor
(GP). Figure 3.9 shows the associated cognitive metapaths. When compared with
S5GG, all of the decision makers are more conservative than they were – they don’t
believe the data. This conservatism serves them well when the transition occurs
because they have a higher residual probability of threat (probability of Asset 1
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Figure 3.9. The response of three decision makers in the S5 engagement with the observa-
tions good but thought to be poor.

respectively) than was the case in S5GG. This misidentification of data quality
preserves the decision maker order found in S5GG, but it acts to slow down all of
the identifications (about a two second delay in threat status identification). Note,
however, that this effect is not the same as would result from a tempo change in
the PME. The decision makers are more data-driven than they are tempo-driven
when the data quality is good. The performance at the metastate level is unaccept-
able: a 10 s delay for NOR and OBT and failure for NOV to identify at the 50%
level.

Experiments S2PP TheAsset 2 �→Asset 1 transition illustrates an engagement in
which both the initial and the final objective are in the threatening MSA. Figure 3.10
shows α̂1 and φ̂1 for the S2 scenario and poor data quality. Since α̂1(t = 0) = 0.6,
the decision makers start in an advantageous position. OBT has an advantage in
high level processing; the MSA does not change during the encounter and OBT

does not expect it to. Both NOR and NOV improve their estimate of the MSA over
time, but neither is the equal of OBT.

Identification of the metastate favors NOR and OBT. When the aircraft shifts
its objective to Asset 1, all of the decision makers have determined the MSA with
good accuracy. Both NOR and OBT are then able to disaggregate using P1. NOV
finds disaggregation difficult because of the continued influence of Pm on P. None
of the decision makers are successful in identifying the metastate transition in a
reasonable interval when the data are poor.
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Figure 3.10. The response of three decision makers in the S2 engagement with the obser-
vations recognized as poor.

Experiments S2GP When the objective data quality is incorrectly evaluated, by
the decision makers operate in a manner similar to that seen in the S5 engagement
(see Figure 3.11). Because of (rather than despite) his stubbornness, OBT is better
at situation assessment than are his fellows.
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Figure 3.11. The response of three decision makers in the S2 engagement with the obser-
vations good but thought to be poor.
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3.6 Conclusions

This chapter illustrates the use of the PME to model the behavior of a human
decision maker performing a situation assessment task. The PME has behavioral
characteristics that mimic those found in experimental studies. Seemingly irrational
behaviors can be captured by adjustment of the subjective tempo of the engagement.
Analysis using the PME makes the investigation of a variety of information-order
effects very easy. This short study also highlights the interaction of information
order and the usefulness of decision aids; the high accuracy measurements should
be used late in data aggregation.

This chapter generalizes thePME by providing a model for hierarchical cognitive
processing. It is shown that the assumptions the decision maker makes regarding
data quality have considerable impact on how information is utilized. There are
styles of situation evaluation that have advantages in some scenarios and not in
others. In engagements where the actual data quality differs from that anticipated,
some decision makers are better able than others to carry the recognition task
to completion. The responses shown here quantify the influence of training (as
indicated by the variability of the {Ki }) on speed of situation recognition.



4
Image-Enhanced Target Tracking

4.1 Tracking an Agile Target

One of the most thoroughly studied applications of hybrid estimation arises in the
synthesis of tracking algorithms for agile targets. These targets, sometimes inten-
tionally and sometimes inadvertently, have motion paths that make them difficult
to follow. One example is that of a piloted vehicle whose location must be tracked
from a fixed sensor.

Whereas mobility describes the movement of the vehicle from one location to
another in a given period of time, agility describes the vehicle’s ability to alter its
mean path during that time period . . . . A major component of agility arises from the
driver’s intention to maneuver. This is a product of training and the perception of
threat. Any analytical approach to modeling a maneuvering vehicle will inevitably
encounter a requirement to represent this intentional motion. [BPL82]

The operator of the vehicle exploits its maneuver capability to create a path that
he hopes will cause the tracker to lose lock. Such paths have a familiar pattern,
with nearly constant acceleration over intervals of unpredictable length followed
by discrete maneuver mode changes. Even autonomous platforms can be designed
to take such evasive maneuvers; for example, an antiship missile on approach to
its objective may follow a preprogrammed jinking path. Such motions often have
a constrained geometric structure. If the missile has limited speed control, it will
focus its evasive efforts on turning motions, where the acceleration is perpendicular
to the velocity. If the tracked object is an aircraft, its velocity is nearly along the
longitudinal axis, and the dominant acceleration is nearly normal to the wings
[HG90].

In such applications, the sample path of the maneuver acceleration is better
described by a discontinuous process rather than a continuous one, and the path
is clearly non-Gaussian (see [CEF89] and the references therein). A representative
maneuver model is created by partitioning the possible turn rates into a finite number
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of levels and describing the maneuver process in terms of a Markov chain [GM77,
MVM79]. The inclusion of discrete acceleration states complicates the filtering
process because the sample characteristics of a Markov chain are unlike anything
generated by an LGM shaping filter.

A problem of this type was introduced in Section 1.2. It was noted that the
position–velocity model is intrinsically nonlinear. A simple model of an evasive
target moving in the X–Y plane at essentially constant speed is given in (1.24):
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, (4.1)

where {X, Y } are position coordinates, and {Vx , Vy} are associated velocities.
In (4.1) there is neither endogenous control (υt ≡ 0) nor plant state set point
(χ = 0,χt ≡ xt). The target is subject to two types of acceleration: a wide band
omnidirectional acceleration represented by the Ft -Brownian motion {(wx , wy)}
and a maneuver acceleration represented by the turn rate process {�t}.

In Chapter 1, location estimation was discussed in the context of a range-bearing
sensor (often called a radar for convenience) located at the origin of the coordinate
system. The outputs of the sensor are {r [k]} and {θ [k]}:

r [k] =
√

X [k]2 + Y [k]2, (4.2)

θ [k] = tan−1 Y [k]

X [k]
. (4.3)

These range-bearing observations can be linearized about x̂t in the usual way, and
the equation for y[k] follows ([HBS89] or [GA93]):

y[k] = H x[k]+ n[k]. (4.4)

In what follows it will be assumed that this linearization has been done and it will
be understood that H depends on the changing geometry of the measurement.

The simplest estimators use an EKF derived by neglecting the turn rate of the
target (replace A(�t) with A= A(�t ≡ 0)) but adding (white or colored) Gaussian
noise to account for the energy and time correlation of the maneuver. The Brownian
excitation in (4.1) fits well within the LGM framework, but the maneuver is trou-
blesome. The discontinuities in the maneuver process do not harmonize well with
a LGM state space model. The usual way to integrate the maneuver into an EKF
would be to first determine the power spectral density (PSD) of {�t}, labeled Φ(ω).
The PSD can be approximated with a shaping filter by adding states to the base-state
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equation (4.1) along with additional Brownian source for the maneuver, {wa}. This
maneuver noise is then added to {wt} in the nonmaneuver model (A(�t ≡ 0)).
This leads to an EKF of higher dimension, which will be called EKF(Φ(ω))

[Sin70, COD91].
Although this approach introduces the proper time correlations of the exogenous

processes, the sample functions generated thereby are certainly not close analogues
to pilot actions. An additive omnidirectional acceleration retains neither the sample
path characteristics of the turn rate process nor the geometry of the acceleration–
velocity vectors. In maneuver encounters, the lateral acceleration is the primary one,
thus making the EKF formalism of doubtful applicability [SKT90]. If the maneuver
is portrayed as additive, the motion model will fail to prompt the estimator to use
the geometry of the encounter to best advantage.

More sophisticated estimators use multiple models to represent target motion
with a family of equations, each tuned to a different turn rate hypothesis. Multiple-
model techniques are motivated by the fact that if the maneuvers could be detected
expeditiously, the plant model would be linear, and the associated EKF would sim-
ply be given by (1.20)–(1.23) with {At} changing concurrently with the maneuver
([MS91] for example). Application of the IMM technique to tracking is explored
in [BBS88], [HBS89], [AIK91], and [DM91].

Let us first look at the Kalman filter in this application:

Between observations:

d

dt
x̂t = Ax̂t , (4.5)

d

dt
Pxx = APxx + Pxx A′ + Rχ .

(4.6)

At an observation:

�x̂[k + 1] = γxr [k + 1], (4.7)

�Pxx [k + 1] = −γx Ryy[k + 1]γ ′x , (4.8)

where {xt}must include any states required to form the colored noise surrogate for
{�t}. Equations (4.5)–(4.8) have been studied intensively and have been used in
numerous tracking applications. Their application might be surprising since the A in
(4.5)–(4.8) is not particularly close to A(�t). However, one of the attractive proper-
sties of the EKF is its generalized robustness; even if the actual environment differs
somewhat from the model, by proper tuning, the Kalman filter gives a good estimate
of the state [Gel84, Chapter 6]. Many examples of filter tuning are found in textbooks
such as Maybeck’s comprehensive three volume work [May79, May82a, May82b].
Maybeck shows clearly that sophisticated use of the degrees of freedom in the
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predictor–corrector framework in the Kalman filter creates serviceable solutions to
numerous and seemingly unrelated estimation problems.

Sometimes the basic EKF must be adjusted by preprocessing the measurements.
The primitive exogenous processes and the subordinate state and measurement
processes in the LGM model are Gaussian, and a Gaussian density has a very thin
tail. It may be that the samples of measurement noise are conspicuously differ-
ent from those of the normative distribution and contain numerous outliers. The
Kalman filter uses a linear weighting on the increments of the innovation process,
and this has the effect of magnifying the influence of outliers; a single anomalous
observation may overwhelm the effect of several more typical measurements. Al-
though an isolated occurrence can be accommodated, if the filter time constants
are long and the occurrences frequent, the estimate generated by the EKF will have
significant error. Performance of the EKF estimator degrades significantly in this
environment without a stage of preprocessing to reduce the influence of anomalous
data points [HMZ87]. In the examples that follow, these outliers are created by
target mismodeling, and the untoward influence of these anomalous observations
will be apparent.

Conventional approaches have proven serviceable in those applications that only
require a reasonably accurate computation of x̂t . If φ̂t is computed at all, it is done
in a cursory manner, and the computation of Pxφ is not addressed at all. Particularly
this last moment is useful in estimation and control, but the geometry is often so
blurred in the model used to derive x̂t that Pxφ cannot be recovered. With advances
in sensor technology, the potential exists to address some of these deficiencies
and to achieve significant improvement in estimation performance. For example,
imaging sensors create measurements of quantities neglected in earlier algorithms.
The raw image data is received as a sequence of matrices of gray levels, generated
in packets or frames. These primitive data are neither in a form nor at a pace
suitable for direct incorporation in a conventional estimation algorithm. In even a
single frame, the fundamental target variables (e.g., target orientation) are buried in
overwhelming spatial detail. An image processor recasts the data frame and extracts
relevant features from it. The processor acts to both compress the data and focus
attention on specific elements. Relevant geometric, topological, or spectral features
of the image are computed, and categorization of the target is deduced upon their
basis [Bha86].

When imaging sensors first made their appearance in tracking applications, the
estimation architecture differed little from its lineal predecessors. For example,
video and forward-looking infrared (FLIR) sensors create a sequence of pictures of
a scene containing the target. No longer is the observation restricted to a point-
equivalent object, but instead, features of spatial extent can be extracted from
each image. In initial applications, however, the imager was viewed as a direct
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replacement for a nonimaging device. For example, in the air-to-surface Maverick
missile, circa 1970, a video tracker was used to follow a mobile target. Scenes
containing the target were generated at a fixed frame rate. From each data frame,
the outline of the target was identified and its center located. In this way the diffuse
image of the target and its surroundings was converted into a bearing angle of an
equivalent point target. The temporal sequence of bearing angles formed the basis
for estimation and guidance.

Imaging sensor-image processors have replaced conventional bearing sensors in
an estimation architecture that differs in no essential way from that which would be
used if the imager were replaced by a point sensor. Although the associated track-
ing algorithm is prosaic, experiment indicates that image-based estimators exhibit
idiosyncrasies not common in other implementations. For example, if the rear por-
tion of the target were suddenly obscured in the image frame, the center of the
image would abruptly accelerate forward with obvious and detrimental effects for
guidance. The source of this type of error resides in the rudimentary image pro-
cessing used in the early applications. The processor locates the ostensible centroid
of the target but ignores shape information because there is no means available to
interpret it. Without compensation for changes in the spatial features of the target,
the conventional estimator proves to be sensitive to structured obscuration. This pe-
culiarity is not unique to image-based systems. Most orthodox filtering algorithms
attenuate the noise by a generalized averaging. The motivation for this is clear in an
LGM environment since the exogenous variables are unpredictable (Brownian mo-
tion). But the obscuration often found in image-based links has both a temporal and
a strong spatial character; it is, consequently, less responsive to simple smoothing.

With more sophisticated processors, a pattern classifier can be employed to com-
pute useful attributes of the image. A prespecified set of topical bins is specified and
each image is placed in a bin. This reduces the output data rate to a manageable level
(i.e., a bin number rather than the gray levels of a pixel array). The information
obtained from the image is often complementary to that obtained from a point-
location sensor. For example, the radar gives information on the motion of a point
target, but the shape of the target gives information on target type and orientation.
The errors inherent in the image link are, however, quite distinct from those found
in the point-observation links. The relevant errors are misclassifications as occur
when the target is placed in topical bin i despite the fact that the correct choice is
bin j . This effect is not well portrayed by assuming that the exact (unquantized)
variable is observed in additive Gaussian noise; that is, the image processor does
not provide the true target type, say j , plus an N(0, σ ) measurement noise. Mis-
classifications depend upon the fidelity of the image and the sophistication of the
processing, and these in turn depend upon range and geometry, the bin size, the
sensitivity of the image elements, etc. The model of the image-observation is better
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Figure 4.1. PME sensor fusion.

written as in (1.53):

dzt = λPφt dt + dηt , (4.9)

where the modal-state φt is suitable defined.
The PME provides an alternative form of sensor fusion, integrating a more com-

prehensive set of zygostate moments. It is akin to the single-model algorithms, but
with the important distinction that the imager clearly provides a new and unique
capability. The formal structure of thePME is shown in the block diagram of Figure
4.1 (see also [MS84], [KMR81]). The upper path is image-specific and uses observa-
tions of target shape to create an estimate of the modal-state {φ̂t}. The imager is also
used additively and multiplicatively to improve the utilization of the point-location
data in the lower path. Both measurement processes are integrated in the moment

generator block. Here, the canonical moments {Pxx} and {Pxφ} are generated, along
with {Pxxφi ; i ∈ S}. These moments are important in their own right and are required
to compute the base-state estimate. The lower path is similar to be the usual path
from range-bearing to the estimate of the kinematic states, albeit with a gain that
depends upon Pxx as computed in the moment generator. But the location estimate
also depends explicitly upon the image measurement with a gain that depends upon
the geometry through Pxφ . In some instances, the measurement in the lower path
is created, in part, by an imager operating in a nonimaging mode. For example, the
imager may give a better bearing measurement than does the radar [CSB96b]. In
this case, the former will be used to the exclusion of the latter without comment.

4.2 Image Modeling and Interpretation

In this chapter, we will use the PME to fuse image measurements with range-
bearing (radar) measurements in a maneuvering target tracker. The target type is
known and the regime variable is an indicator of the maneuver mode. The imaging
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sensor–processor generates a sequence {zt} used to determine the regime and to
complement the radar measurement, {y[k]}, in location estimation. To illustrate,
consider the problem of tracking a tank moving on an evasive path. The tracker
contains a data base of tank images, stored and used as templates for classifying
the received images. A truth model is created using scaled plastic replicas mounted
on a gimbaled mechanism. The replica is rotated about its azimuth axis. Azimuth
orientation is divided into L equal angular bins. In each bin, the replica is centered
and a 2D-image template created. This set of projections forms the knowledge base
upon which the image path in Figure 4.1 functions. The angular quantization is
arbitrary, but the more image templates stored and the more detail preserved in the
template, the harder the classification step becomes.

Figure 4.2 shows a pair of the images of a tank replica as it is rotated. Associate
with each bin an orientation indicator vector ρt : ρt = ei ; i ∈ L, if the replica is in
the i th angular bin. In the figures, the images are quite clear and it is evident that
ρt could be deduced from the image.

Although the angular orientation of the target is a continuous variable, it is ex-
pedient to represent it with the discrete process also labeled {ρt}. This has the
advantage of matching the angular state to the measurement, but it has the disad-
vantage that the turn rate cannot be written as the time derivative of {ρt}. Even so,

Figure 4.2. Images of a tank at two azimuth angles.
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the angular state is not the modal-state. The rate of change in {ρt} is closely related
to the turn rate process: The faster the turn, the shorter the lifetime in an angular
bin, with the direction determined by the sense of the turn. As {ρt} moves from
angular bin to angular bin, the turn rate can be inferred. There are intrinsic lags,
however. As the target moves in azimuth, the image will be classified in a single
bin until it crosses a bin boundary. Alternatively, if the image remains in a bin, has
the target stopped rotating or is it merely in the process of crossing the bin?

These motion ambiguities are magnified by noise in the image. Disturbances in
both the visible and the infrared bands produce changes in the apparent shape and
internal structure of the target. For example, smoke and contrails in the visible band
and plumes in the infrared band will cause the ostensible contour to differ from the
true shape of an aircraft with a fixed geometric relation to the sensor. Shadows or
internal reflections of sunlight can cause local edges in the interior of a visual image.
Internal heating or external heat sources can likewise change the internal distribution
of thermal signatures. Especially for ground vehicles, smoke and dust increase the
likelihood of partial occlusion. Standard pattern recognition approaches that involve
global features of the object (e.g., moment invariants or Fourier descriptors) degrade
when confronted with even local changes in perceived shape.

Some of the potential image processing errors can be identified by studying
Figure 4.2. A limited replica data base and the need to minimize the latency interval
during which image classification is performed combine to restrict the precision
with which the image models are stored. There are several types of error that
arise in image interpretation, and these distinct error categories have demonstrably
different effects on estimation accuracy. First, there are local ambiguities in the
image that cause the processor to place the target in the orientation bin next to the
correct bin. For example, slight distortions in the ostensible silhouette will lead
the processing algorithm to misclassify an image by placing it in an adjacent bin.
This is called a nearest neighbor error (NNE). Note that NNEs are particularly
important in creating a false indication of a turn because a lateral acceleration is
initially manifest in motion to the adjacent angular bin.

Another type of image interpretation error is illustrated by viewing the picture
at a long range. When the image is of very poor quality (see, for example, image
(4, 1) in Figure 1.7), the template matching procedure fits the image arbitrarily.
To indicate the global nature of these errors, they will be referred to as uniformly
distributed errors (UDE). Such errors are most common at ranges and geometries
with few pixels-on-target or when there is significant image occlusion. The UDEs
are most like the white noise disturbances often used in the radar models.

The image in Figure 4.2 is such that it is easy to see interior features of the tank.
From these, it is possible to state that the tank is moving away from the observer.
With lower image clarity, these features would become less distinct. Many classifiers
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emphasize the silhouette of the target. There is frequently more contrast at the
target–background boundary, and the image processor uses this contrast to locate
the silhouette. If the images templates are also reduced to silhouettes, the measured
silhouette can be used to classify the orientation. Unfortunately, a silhouette is
compatible with more than one angular bin. For example, the tank moving directly
toward the sensor has the same silhouette as the tank moving directly away. When
the image processor places an image in a bin associated with the same contour, but
which is symmetrically placed about a plane perpendicular to the line of sight, a
projection error (PE) is said to occur. Only the internal structure of the image can
be used to reduce this aliasing.

The three error categories described above provide a basic error taxonomy use-
ful in exploring the degree to which image enhancement can be used to improve
estimation. In many encounters, both the magnitude and the relative distribution of
the error types changes over time. For example, at long ranges the target subtends
few pixels. Uniformly distributed error predominates, and the imager gives little
useful orientation information. Fortunately, at these ranges, there is little advantage
to maneuvering, and adequate estimation and prediction can be done without ma-
neuver detection. At close ranges, the image is big enough that most of the image
ambiguity is captured by the PE category. But these are precisely the ranges at
which the internal structure can be used, if desired, to most effectively resolve this
error. Furthermore, at close range maneuvers are of little consequence since the
requisite prediction time is small. The NNEs are most prominent at intermediate
ranges. Although this might seem to imply that NNEs are fairly benign, this is not
the case. It is in this intermediate region that maneuvers are most effective and the
NNEs have the most pronounced influence on false motion detection.

It is clear that an orientation measurement would be useful in determining changes
in target motion. In a novel study of the utility of augmented sensor systems, Lefas
noted that if the roll angle of an aircraft were transmitted to the tracker, improved
performance would be attainable using a roll-angle adaptive filter [Lef84]. The
problem that motivated his analysis involved estimating the trajectory of a cooper-
ative airplane (air traffic control), and attention is focused on adaptive single-model
filters in which the gain is adjusted whenever a maneuver is suspected. Although the
estimation architecture would not be attainable in a hostile engagement, his results
illustrate the efficacy of maneuver-adaptive estimation for tracking agile targets.

In an important series of papers, Andrisani and his coworkers studied orientation
aiding within the EKF framework. The angular variable was added to the state
space model in [AKKS91] and [AS87]. The measurement equation used in the
references mimicked (4.4); that is, the center of reflection and the angular variables
were both measured with an additive, white noise channel. The authors observed
that “attitude information, obtained from an optical image processor, in a tracker’s
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Kalman filter gives valuable lead information when tracking a fixed wing aircraft
by being able to determine the direction of the lift vector” [AKG86]. The lead
in the image data is of fundamental importance in improved tracker performance.
Position is two integrals removed from an acceleration. A maneuver manifests itself
in a path change over time, but initially, this change is difficult to detect in the noisy
location data available to the tracker. Orientation is a much faster indicator. After
factoring in geometric effects, a change in orientation of a fixed-wing aircraft gives
an immediate indication of a maneuver, and this can be used to adjust the gains
in the EKF. For a target such as a tank, a jinking path is created by turning, and
the turn rate can be deduced from changes in angular orientation. In both cases,
direct measurement of target orientation gives a faster indication of a maneuver
than could be obtained from noisy trajectory data alone.

4.3 Tracking Maneuvering Targets

In this section we will present algorithms that achieve fusion of unlike sensors. We
wish to model the maneuver process with more fidelity than possible with an LGM
shaping filter, and we wish to use a measurement model more representative of
the idiosyncrasies of an image classifier. The previous section presents some issues
associated with online image generation and processing. In the tracking application,
the imager creates a measurement sequence that is discrete in both time and space.
Time quantization is not unusual, but spatial quantization is unorthodox. Rather
than generating a measurement whose natural range is an interval (e.g., bearing),
the imager translates a data frame into a statement of category selected from a
prespecified alphabet of topical symbols.

Equation (4.1) is the motion model of the target. If {�t} is ignored, a radar-based
EKF is simple to design but has obvious deficiencies. An increase in model com-
plexity gives a more realistic motion equation that preserves some of the geometry
of the engagement. Rather than neglecting the turn rate, replace it with a Gaussian
surrogate. Select the initial probability distribution so that {�t} is a wide sense
stationary process with a power spectral density Φ(ω). A shaping filter is used
to represent the turn rate process. This increases the size of both the state vector
and the Brownian motion [Ber83]. If the shaping filter is first order, the integrated
motion model is:
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where {wa} is a fictitious Brownian motion used to generate the ostensible maneuver
path. The turn rate model is a two-parameter family, with τ the time constant of the
shaping filter, and R(0) = E[�2

t ] the intensity of the turn rate process. The model
(additive and multiplicative acceleration, nonlinear observation) leads naturally to
a two-parameter family of filters, EKF(Φ(ω); R(0), τ ), with the correct choice
depending on the volatility of the encounter. Predictably, improved tracking can be
obtained by tuning them to a pseudo-encounter (i.e., tuning for response rather than
trying to mimic the encounter dynamics [CT84]). The attractive feature of (4.10)
is that the acceleration dynamics are included explicitly, and thus the correlations
in the acceleration direction are maintained during flight. The unattractive feature
of EKF(Φ(ω); R(0), τ ) is that it is based upon a localization of the motion model.
The turn rate changes suddenly, and to replace the individuated equations with an
average motion blurs the intrinsically partitioned nature of the equation of evolution.
The estimates can be poor even if the first-order model of (4.10) is replaced with
higher order models [SHK93].

To integrate the maneuver motion more precisely into the estimation algorithm,
the encounter model must be completed. Because the turn rate tends to be nearly
constant over intervals with sudden changes at unpredictable times, a useful model
is created by partitioning the range of turn rates into K levels; �t ∈ {a1, . . . , aK }
[RW78]. The indicated acceleration states are aggregates insofar as the actual ac-
celeration is randomly placed within the associated bin. Replace the multivalued
process {�t} with a process taking on values in a set of unit vectors. Let {αt} be
the maneuver indicator process; αt = ei if �t = ai . The base-state is described by a
family of K stochastic differential equations indexed by the maneuver acceleration
and continuous at the modal transitions.

To complete the modal model, suppose the successive maneuver modes are rep-
resented by an Ft -Markov chain with transition rate matrix Qα. This subsumes
the case in which the turn rate is an unknown constant, Qα = 0. The orientation
process, {ρt}, will be modeled rather coarsely. Associated with every turn rate hy-
pothesis (e.g., αt = ei ), {ρt} will be represented with an Ft -Markov process with
generator (Qi )′. The rate matrices {Qi ; i ∈ K} can be selected to match the mean
sojourns in each orientation bin and the bin-to-bin transitions. The latter are usu-
ally quite simple since in most cases the orientation process must transition to a
contiguous bin. It will be supposed that bin transfers and maneuver mode tran-
sitions are not coincident. The modal state process is created by composing αt

and ρt : φt = αt ⊗ ρt . Unfortunately, this Markov model does not display relevant
detail of the lifetime distributions in modal sojourns, either in bin or maneuver
mode.

Although modeling the turn rate in this way makes analysis more difficult because
it leads to non-Gaussian sample paths, Equation (4.1) is a linear equation with an
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unknown coefficient, αt . This suggests that estimation could be divided into three
distinct phases. “First the maneuver must be detected. Second the Kalman filter
state is corrected to compensate for the previous maneuver. Third, after detection
and correction, the Kalman filter parameters are correspondingly adjusted in an-
ticipation of future maneuvers” [Bog87]. Although intuitively appealing, there are
difficulties with this seemingly self-evident procedure. It was noted for example
in the reference that “in one application . . . it was possible for the maneuver to be
completed by the time it could be successfully detected” [Bog87]. The lags inherent
in the maneuver detection and correction can so delay a response as to make the
procedure unusable. Further, the need to adjust the parameters of the Kalman filter
raises subtle issues. The filters are concatenated as the dynamic mode changes, and
the gain of the EKF has the error covariance as a factor. This matrix is computed,
forward in time, based upon the ostensible maneuver process; when a change in the
maneuver mode is detected, the dynamic equation of {Pxx} is changed in concert.
But what should be done with {Pxx} at the time of modal transition? This issue arose
in the study of multiple-model algorithms. It has been proposed that “the covariance
of the bias estimation filter (must be) reset to reflect the increased uncertainty in
the bias estimation due to the transition” [WF88]. The uncertainty increases in the
interval between a transition and its detection, but the degree to which it changes
is difficult to quantify.

Various ways of resetting the covariance have been proposed. In [SH90], the turn
rate was treated as additive disturbances, and its Zt -conditional mean was added
to the conventional, nonmaneuvering, EKF. This proved to be a useful approach
but exhibited poor performance subsequent to the maneuver. This deficiency was
predictable and followed directly from the fact that a small value of Rχ in (4.6)
will result in a slow decay of any errors created during the maneuver. To avoid this,
covariance adaptation is required. As already noted, adding pseudonoise through W
reduces the filter time constants and improves maneuver tracking but makes nomi-
nal operation more volatile. In one instance it was suggested that the elements of the
W matrix be augmented proportionately “to the amount of acceleration along each
axis” [Bek83]. However, W augmentation should be eschewed during a constant
turn. Williams and Friedland [WF88] point out that it is actually the uncertainty in
maneuver estimation that induces a need to change the EKF dynamics. Fortunately,
the requisite information is readily available from {α̂t}. The maneuver variance is
given by

var(�t) =
∑

i

a2
i α̂i −

(∑
i

ai α̂i

)2

. (4.11)
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Equation (4.11) has an intuitive appeal. When the maneuver is resolvable from the
image sequence (α̂t ≈ ei ), acceleration uncertainty is small. Alternatively, as the a
posteriori probabilities of the maneuver hypotheses become more diffuse, var(�t)

grows. This is precisely the sort of situational adaptation required. The process
noise intensity W can be augmented proportionally to acceleration uncertainty
(rather than acceleration magnitude), transformed into the Cartesian coordinate
system [SH92]. The corresponding value of {Pxx} is the solution to (4.6) with the
increased Rχ . Through this simple artifice, a maneuver adaptive EKF is created.
The mean acceleration is added as a bias to the base-state drift, and the tracking
time constants are modified as well.

The imager is a feature-matching block, and its errors are not well described
by additive Gaussian noise. The imager collects data at a rate of λ frames/s and
places each target image into one of L equally spaced orientation bins. The output
of the image processor is written as an L-dimensional counting process {zt}, the i th
component of which is the number of times the target has been placed in bin i on the
interval [0, t]. This sequence of symbols can be interpreted by a temporal processor
to give the relative likelihoods of the various turn rate hypotheses. This development
is carried out in [SH90] and can be summarized as follows. The composite modal-
state of the target is given by {φt} = {αt ⊗ ρt}, the Kronecker product of maneuver
and orientation. From φt both αt and ρt can be deduced:

αt = (IK ⊗ 1′L)φt , (4.12)

ρt = (1′K ⊗ IL)φt . (4.13)

The quality of the imager is determined by the frame rate λ and the L× L discerni-
bility matrix P = [Pi j ], where Pi j is the probability that bin i will be selected by
the processor if bin j contains the true target orientation at time of image creation:
Pi j = P(�zt = ei | ρ = e j ) [SH89]. Note that the dimension of P is that of the
orientation, and not that of the K L-dimensional modal-state, φt . The discernibility
matrix can be expanded to accommodate φt in a direct manner:

P �→ (1K ⊗ IL)P(1′K ⊗ IL).

In what follows, we will talk about P as an L × L matrix while in the algorithms
P will be K L × K L . The modal-state is an Ft -Markov process with generator Q′

composed of the primitives Qα and {Qi ; i ∈ K}.
The fidelity of image interpretation is a function of the frame rate (λ), the ability

of the image to correctly classify a single image (P), and the tempo of the encounter
(Q). These factors interact in subtle ways. For example, a rapid tempo requires a
high frame rate if expeditious maneuver detection is to be accomplished. In the
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same way, to compensate for a low frame rate, the quantization must be fine (L
large) and the processing accurate (P ≈ I). In the tracker architecture shown in
Figure 4.1, it is usually assumed that the image-based path gives a much more
expeditious indication of a turn than does the conventional path. The motivation for
this stems from the fact that the imager measures directly the target features that
most clearly manifest changes when the target turns. In such cases, there is little
error if turn rate estimation is based exclusively on image data. The Zt -conditional
probabilities of the various turn rate hypotheses are given by the K -dimensional
process α̂t :

α̂t = [P(Φt = ai |Zt)]

= (IK ⊗ 1′L)φ̂t . (4.14)

The L-dimensional, piecewise constant process {ϑt} is defined in Chapter 2 (see
Section 2.3):

�ϑt = λP′(λ̂−1
t ∗�zt).

The PME is made simpler because of the continuous base-state paths and the
direct observation xt . Recall that the covariance of the increment in the base-state
innovations process is

Ryy = H Pxx H ′ + Rx = D−1
yy .

Let γx = Pxx H ′Dyy . We have the following set of equations:

the PME: continuous base-state, time-discrete measurements

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

Ai Rxφi ,

d

dt
Pxφ =

∑
i

Ai P(xφi )φ + Pxφ Q,

d

dt
Pxx =

∑
i

(
Ai P(xφi )x + (·)′)+ Rχ ,

d

dt
Pxxφm =

∑
i

(
Ai P(xφi )xφm + (·)′ + Pxxφi Qim

)
.
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At a modal observation:

φ̂
+ = φ̂− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ = −�x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x − P+xφm
�x̂ ′

+
∑

k

Pxxφmφk�ϑk .

At a base-state observation:

�x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γx .

4.4 An Example: An Antiship Missile

To illustrate the utility of image enhancement in tracking a maneuvering target, sup-
pose an antiship missile is launched at a range of 80 km, an altitude of 1 km, and
speed of 300 m/s. After a free fall to 780 m, the missile approaches a ship at a speed
of 335 m/s. Nearing the ship at constant altitude, the missile performs a series of 7 g
jinks, coasting for 10 s and then making a final 3 g turn toward its intended destina-
tion. This trajectory, along with several other motion paths, was created by investi-
gators at the Naval Surface Warfare Center (NSWC), Dahlgren Division to provide
realistic benchmark tests for proposed tracking algorithms [BWC94]. The sensor
suite consists of a radar and a collocated imager on the ship. The radar errors are
Gaussian with standard deviation 40 m in range and 1.75 mr in bearing (at 50 km this
translates into about a 90 m cross-range error). The nominal radar interdwell time
is 1 s. Because the duration of a turn is only a few seconds, the radar has neither the
update rate nor accuracy to resolve turns well. Radar-exclusive, input-identification
algorithms are destined to fail because of the lack of timely motion data.
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Figure 4.3. The target path along with estimates of position generated by EKF(1sR).

The radar-exclusive EKFs selected for comparison are found by neglecting the
maneuvers (i.e., �t ≡ 0) and setting W = 1. In the algorithms that follow, the initial
covariance is diagonal with 100 m standard deviation in position and 20 m/s in
velocity. All of the estimators are initialized on the true base-state of the target at
the time of detection, though the estimators don’t know this.

A sample of a portion of the path is shown in Figure 4.3 along with a feather plot
of the output of the nominal EKF (denoted by EKF(1sR)). The target is detected
at t = 75 s, just before the first turn, which begins at t = 77.3 s. This gives the
estimator 2.3 s to initialize itself on the initial coast segment.

The EKF is seen not to be adequate in this application. Because of the omniscient
initialization, EKF(1sR) tracks into the first turn, but it begins to lag thereafter. By
chance, the target later turns toward the estimate. This fortuitous event causes
the error in the EKF to be reduced, but the error soon builds up again in the
other direction. The intermediate coast is not long enough for the EKF to return to
quiescent operation. Again the error is small only when the target happens to turn
toward the estimate.

More intensive use of the radar will lead to improved performance, although
this has the disadvantage that it may preclude the use of the radar for tracking
other targets. With an interdwell interval of 0.1 s, an EKF using the same radar
can be developed (labeled EKF(0.1sR)). The mean radial errors of EKF(1sR) and
EKF(0.1sR) are shown in Figure 4.4. This figure (as were all plots of mean error)
was generated as the sample average of ten independent runs. Certain unappealing
aspects of an EKF are apparent from the graph. With perfect initialization, both



4.4 An Example: An Antiship Missile 99

EKF(1sR)  
EKF(0.1sR)

75 80 85 90 95 100 105 110 115 120
0

100

200

300

400

500

600

700

800

900

TIME (S)

R
A

D
IA

L 
E

R
R

O
R

 (
M

)

Figure 4.4. Mean radial error for EKF(1sR) and EKF(0.1sR).

EKFs begin with small error. The first turn, beginning at 77.3 s, causes the radial
error to increase, initially at about the same rate for both EKFs, but the rates
soon separate themselves. Indeed the error before an update builds to 900 m for
EKF(1sR) and 350 m for EKF(0.1sR). This occurs despite the 100 m accuracy
for the measurements. This excess error is caused by the failure of the EKFs to
avoid a buildup of velocity error during the first turn. Velocity error confuses both
of the EKFs so that when the target returns to coast motion (∼90 s and ∼105 s),
neither tracker returns to quiescent conditions. This response is typical on paths
with mode transitions. Mismodeling leads to errors early in the encounter that are
reflected throughout the path, and not just in the portion of the path during which
the mismodeling is most egregious.

It should be noted that the radar used in the benchmark studies loses lock at
about 400 m radial error at this range. With the indicated errors, the trackers would
likely lose lock on most runs. Certainly, better performance is achieved when the
interdwell time on the radar is short. A shorter extrapolation time yields less error
during the turn for both position and velocity, but interestingly this reduction is not
nearly proportional to the increase in sensor utilization (by a factor of 10). The EKF
at 10 dwells/s is simply not acceptable.

There are several contributors to the poor performance of the EKFs in this appli-
cation, but a primary one is related to the imprecision of the covariance calculation,
Pxx . Figure 4.5 shows the path of the target along with the one-σ error ellipses
(formed from the error covariance Pxx and shown every 0.2 s). The small ellipses
are associated with EKF(0.1sR) and the larger with EKF(1sR). The ellipses are
centered on the associated estimate of the EKF. The improvement in performance
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Figure 4.5. Computed error ellipses for EKF(1sR) and EKF(0.1sR).

associated with more frequent measurements is apparent in this figure too. How-
ever, both of the EKFs have an overly optimistic view of their performance as
evidenced by the area of the ellipses. Neither of the EKFs use the innovations effi-
ciently, leading therefore to tracking errors far in excess of the measurement errors.
The failure of the error ellipses (or even two-σ ellipses) to enclose the path has
important implications. Adaptive control of the sampling rate, of the window size,
or of the radar SNR are often based upon the computed error covariance matrix.
When Pxx is too small, the adaptation is unsuitable.

To illustrate the utility of image enhancement, suppose this same radar is aug-
mented with an imager. The imager has the same sample rate as does the radar:
λ = 1 f/s. Very coarse bins will be used: L = 12 (30◦ angular bins). Both the frame
rate and the angular discretization are well within current practice [SVH93]. The P
matrix characterizes the fidelity of the imager–image processor for a single frame.
The error taxonomy separates the imager error into three categories and constructs
P from these (exclusive) primitives. Local image degradation is caused by pixel
noise and quantization. This will be represented by assuming that the image is
misclassified symmetrically into a neighboring bin (spillover error, NNE). Other
sources of image distortion act globally (e.g., severe occlusion of the image). This
results in errors of large magnitude and will be represented by assuming that the
image is classified with uniform probability across all possible angular bins (UDE).
The most distinctive image error occurs when the ostensible orientation bin is sym-
metrically placed about a line perpendicular to the line of sight (PE). This error
source represents the intrinsic ambiguity that arises when the orientation classifier
relies heavily on the silhouette of the extended object.
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Table 4.1. Error parameters for good
and poor imagers.

Imager UDE NNE PE

IG 0.05 0.05 0.1
IP 0.2 0.1 0.4

Two imagers will be studied. The first (IG) is of good quality, correctly classifying
target orientation 80% of the time. The second (IP) is of poor quality, providing
correct classification only 30% of the time. The specific parameters of the imagers
are given in Table 4.1.

Although the standard deviation of the imager errors does not give a clear measure
of imager accuracy in the same way it does for the radar, it is interesting to compare
the size of the angular errors for the two sensors. If the true target orientation is
uniform in the bin, and if the projection error, which can vary from 0◦ to 180◦,
is set at 90◦, the standard deviation of IG is 37◦, while that of IP is 74◦. Both
error figures are so big as to suggest the imager would be of little use in tracking
(compare the radar bearing error of 0.1◦). However, the tracker has a well-defined
model of angular motion.

To particularize the PME, let

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.
The mean sojourn time in each of the maneuver states will be assumed to be 5 s, with
each turn being followed by a coast. From coast, the turns are equally likely. The
initial maneuver modes will be assumed to be equally likely. From this the modal
dynamics can be deduced. The PME using imager IG is labeled PME(IG), and the
PME using imager IP is labeled PME(IP). A comparison of sensor utilization is
given in Table 4.2.

Mean radial error using PME(IG) is shown against that for EKF(1sR) in Figure
4.6. The radar sample rate for PME(IG) is equal to that of the nominal radar:

Table 4.2. Radar rate and imager
quality for EKF and PME.

Algorithm Radar Rate Imager

EKF(1sR) 1 dwl/s none
EKF(0.1sR) 10 dwl/s none
PME(IG) 1 dwl/s good
PME(IP) 1 dwl/s poor
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Figure 4.6. Mean radial error for EKF(1sR) and PME(IG).

1 dwell/s. With the perfect initialization, the EKF is superior to the PME into the
first turn: EKF(1sR) errors of 50 m on [75, 80] s compare with 100 m errors for
PME(IG). The EKF is superior to PME(IG) because it does not expect a turn and
none occurs. However, as the turn proceeds, the EKF has errors that grow to 900 m
before an update and to 600 m after an update. The PME keeps errors during
the turn to less than 150 m, a significant improvement given that they both use the
same radar. Again it should be noted that the points along the curve at which the
EKF is superior to the PME(IG) are those points that the target chances to turn into
the estimate. The relative performance of PME(IG) and PME(IP) varies during the
turns (not shown), but not to the degree nor in the direction that one might expect.
A good imager leads to improved performance for the most part, but not uniformly.
Over the full path, the PME keeps its errors low: less than 100 m after a radar
update and less than 60 m over most of the path for PME(IG) with slightly higher
numbers for PME(IP) (see [SBCV99] for the comparison). Both display tracking
performance that is superior to an EKF with ten times the radar sample rate.

As noted, the problems encountered by the EKFs are due in part to their inability
to properly ascertain the error covariance along the path. Because their gains are
lower than they should be, they are unable to correct the large errors spawned by the
turns. Figure 4.7 displays a single sample of the centered error ellipses generated
by PME(IG). These are shown along with the previously displayed ellipses of
EKF(1sR). Note that the error ellipses of PME(IG) are larger than those associated
with EKF(1sR) as befits the recognition of the uncertainty created by maneuvers.
Further, the ellipses lie closer to the true path – the two-σ ellipses would enclose the
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Figure 4.7. Computed error ellipses for EKF(1sR) and PME(IG).

true path in all but a few instances. The computed error variance is more responsive
to changing conditions. The corresponding ellipses for PME(IP) look much the
same as those of PME(IG).

The PME achieves improved performance with its explicit inclusion of the turn
dynamics in the path model. The accuracy of the image-based maneuver identifi-
cation is dependent upon the imager accuracy (i.e., on the discernibility matrix P).
Figure 4.8 shows a sample of the Zt -probability of a turn: {1− α2}. Both the poor
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Figure 4.9. The cross error moment of X -position and coast maneuver mode.

imager (shown solid) and the good imager (shown dotted) are displayed. The good
imager is both faster and more certain in its identification of a return to coast as
compared to the poor imager. It is not, however, nearly as much better as the relative
sizes of the imager errors would suggest. The good imager is more confident, but
when it makes an error, it tends to be a bigger blunder.

The geometry of motion enters into the extrapolation and update through {Pxφ},
the second mixed central Gt -moment of the zygostate. Most algorithms do not com-
pute this moment, and so {Pxφ} is not used to improve the estimate. Figure 4.9 shows
a sample path of {PXα2} (the second mixed central Gt -moment of X -position and
the coast maneuver mode): PME(IG) is shown dotted and PME(IP) is shown solid.
The local variation is dominated by the radar measurement though an individual
image measurement can cause volatility if the imager is good. For this path, a right
turn is associated with PXα2 ≥ 0. Suppose α̂2 ≈ 1 (certain of coast) and a turn
begins: α̃2 = α2 − α̂2 < 0. For the indicated geometry, a turn to the right increases
the X -velocity; that is, x̃t = xt − x̂t ≤ 0 because of estimator lags. Thus, it is not
surprising that PXα2 ≥ 0 for right turns (respectively PXα2 ≤ 0 for left turns), but
the actual path of {Pxφ} would have been hard to intuit.

This example shows that the PME permits a more efficient use of the primary
sensor. Specifically:

• The tracking error can be reduced with an imaging adjunct.
• If the image quality degrades, tracking performance does not degrade pro-

portionally.
• The performance attainable from the PME is hard to achieve by more

intensive use of the primary sensor.
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4.5 Renewal Models for Maneuvering Targets

While relatively uncomplicated, Equation (1.12) has a major drawback as a pat-
tern for deliberate maneuvers. It is well known that if {αt} is a Markov process,
the sojourn times in each maneuver mode are exponentially distributed, and as a
consequence, short lifetimes predominate. A sample function of a Markov pro-
cess provides convincing evidence of the occurrence of maneuvers too short to
accomplish any evasive intent (see, for example, [LF91]).

With the inherent lags in the target dynamics and in the internal actuating loops, it
is difficult to imagine that a pilot would be inclined to select maneuvers with duration
below some limit determined by the agility of the vehicle and the responsiveness of
the actuators. To do so would result in much pilot effort and little meaningful path
deviation. In fact, pilots are trained to fly evasive jinking maneuvers in the form
of concatenated periods of constant turn-rate maneuvers with the duration of each
segment lasting seconds. The short sojourns predicted by the Markov model seldom
appear in exercises. During quiescent motions, the modal lifetimes are nominally
longer, and there is a low probability of the occurrence of overly brief sojourns even
with the Markov model.

To correct this readily apparent deficiency, a modal model should be used that
preserves the unpredictability of the turns but reduces the incidence of excessively
short sojourns. Figure 4.10 shows three different probability density functions with
the same mean: 1 s. The first (R= 1) is exponential and clearly shows a prepon-
derance of short lifetimes along with a rather fat tail. The second (R= 2) shows
a dramatic reduction in the frequency of very short lifetimes, along with some
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Figure 4.10. Gamma densities for three values of R.
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decrease in protracted ones. The third curve (R= 5) is sharply peaked, indicating
more quasi-predictable intervals.

The three curves shown in Figure 4.10 are gamma density functions. The gamma
density is a two-parameter family, γ (t; R, λ); R, λ ≥ 0, in which R controls shape
of the density and λ controls time scale:

γ (t; R, λ) =
{
λ('(R))−1(λt)R−1e−λt , t ≥ 0,

0, otherwise.
(4.15)

The mean of a gamma distributed random variable is ν = R/λ, and because it has
a more intuitive connotation, ν will be used instead of λ to indicate the time scale.
The plots in Figure 4.10 are for γ (t; R, ν = 1).

The modal lifetime distribution using a gamma density is more reasonable in
applications than is that using an exponential density. Suppose therefore that, instead
of using a Markov process, we model {�t} with a finite state renewal process
having modal sojourns distributed according to a γ density. A renewal process is
distinguished by two things: the sequencing of modes, for example, ei �→ e j at time
t (�αt = e j −ei ), and the lifetime in each mode. Both are unpredictable (random).
In a renewal model, the modal-state sequence is Markovian with transition matrix
P: Pi j is the probability that ei �→ e j given that αt− = ei and the maneuver mode
changes at time t , with Pi i = 0 for all i ∈ K to complete the matrix. The sojourn
times are independent given the past sequence of modal transitions. Though not
identically distributed across modes, it will be assumed that the sojourn times in
a maneuver state are given by the gamma density (4.15). Instead of the single
transition rate matrix Q in (1.12), the maneuver dynamics are now characterized
by the pair {P, γ (t; Ri , νi ); i ∈ K}.

If {Ri ; i ∈ K} are all equal to 1, {αt} is a Markov process; if any of the Ri are not
1, {αt} is not Markov. As long as the {Ri } are positive integers, the non-Markovian
maneuver model can be integrated into the earlier algorithms by expanding the
dimension of the modal-state space; creating a set of ersatz maneuvers. The state
space of αt is of dimension K . Associate to the set {Ri ; i ∈ K}, the set of integers
A = A1∪ . . .∪AK , where A1 = {1, . . . , R1},A2 = {R1 + 1, . . . , R1 + R2}, and so
on; each substantive maneuver mode, α = ei , is decomposed into Ri pseudomodes,
each of which is associated with the same turn rate. The γ -renewal process is
Markov in the larger state space. To find its transition rate matrix, Qγ , define for
every p ∈ K the maximum and minimum pseudomode indices:

rp = min
k
(k ∈ Ap),

sp = max
k

(k ∈ Ap).

Then rp is the entrance state into the pth maneuver mode, and sp is its exit. Note
that the dimension of the γ -renewal model is sK .
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To maintain both the mean sojourn times and the sequencing of substantive
maneuver modes displayed in Qα, Qγ should be chosen as follows:

Qγ
i j = Rp Qα

pp, if i, j ∈ Ap and j = i;
= −Rp Qα

pp, if i, j ∈ Ap and j = i + 1;
= Rp Qα

pk, if i = sp, j = rk, and p �= k;
= 0, otherwise.

With these changes, the maneuver state dynamics can be found by replacing the
K×K transition rate matrix for the maneuver process, Qα, by the (sK ×sK )-matrix
Qγ . The dimension of {α̂t} goes up as sK /K .

4.6 Performance Contrasts with Different Lifetime Modeling

To illustrate the how tracking performance changes as the modal model is varied,
consider a low-speed vignette. After an extended interval of coasting, a target makes
a single turn of nearly 180◦. The target is detected at (X0, Y0) = (1.0, 6.4) km,
with initial velocity (Vx0, Vy0) = (5.0,−13.3) m/s. The target moves at essentially
constant velocity (coast) on t ∈ [0, 10) s. A 0.5 g turn is executed on t ∈ [10, 20),
after which the target returns to constant velocity motion. The omnidirectional
accelerations are slight: W = 0.1 (m/s2)2.

To determine the processor dynamics in the upper path in Figure 4.1, the maneu-
ver tempo must be quantified. The lateral accelerations in the target will be given
by

�t ∈ {a1 = 17.3◦/s, αt = e1; a2 = 0◦/s, αt = e2;
a3 = −17.3◦/s, αt = e3}

with the chain {αt} symmetric about the coast mode. The elements of the Qα-
matrix are determined jointly by the mean sojourn time in each acceleration mode,
{νi , i = 1, 2, 3; ν1 = ν3}, and the transition probabilities from a maneuver to the
nonmaneuvering mode. Let q = P(αt = e2 | αt− = e1 and�αt �= 0). Then q
measures the fraction of times that a maneuver ends in a coasting motion (e.g.,
q = 0 implies pure jinking motion, and q = 1 always interjects coasting between
turns). The sojourns in the coast mode have exponential lifetimes (R2 = 1) and the
lifetime distributions in the turn mode are the same (R1 = R3 = R).

The sensors are located at the origin (0, 0) of the coordinate system. A radar
provides range-bearing measurements, {y[k]}, at a 10 samples/s rate. The mea-
surement errors are Gaussian with standard deviation 5 m and 0.25◦ (about 4 mr)
respectively.



108 Image-Enhanced Target Tracking

An imaging sensor is collocated and makes orientation measurements of the tar-
get at the same rate (i.e., λ = 10 frames/s). The bin width is 30◦ (L = 12). The
imager error taxonomy includes errors of three types as before: UDE, in which
the output symbol is uniformly distributed without regard to the true orientation;
NNE, in which the ostensible orientation is placed in the neighboring angular bin;
and PE, in which the image processor places the target orientation in the bin sit-
uated symmetrically with respect to a line perpendicular to the line of sight. The
indicated frame rate and bin size are well within current standards. The error rates
depend upon the sensor used.

There are various ways to approach this tracking problem. The simplest would
be to ignore the turns and the imager and select an EKF based upon the geometry
and the radar. This would lead to a four-dimensional tracker. A more sophisticated
implementation of the EKF would use a shaping filter to generate a surrogate for
the maneuver process and add this contribution to the Brownian disturbance. This
increases the dimension of the base-state model because of the state augmentation
in the shaping filter. The augmented model is also highly nonlinear.

Denote the augmented EKF by EKF(Φ(ω); q, R). To implement this filter, we
must find the power spectral density of {�t}, use Φ(ω) to create a shaping filter,
and design an EKF in the augmented state space. This requires some computation
because of the convoluted form of the maneuver process. The derivation of Φ(ω)

for a stationary version of the maneuver process is presented in [SKVH95]. Here,
we will sensitize the EKF to a turn; set q = 0. The coast mode (φt = e1) is transient
and does not influence Φ(ω). The PSDs are shown in Figure 4.11 for three values
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Figure 4.11. Power spectral density for q = 0; R = 1, 2, and 5.
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Table 4.3. Sensor quality for
two imagers.

Imager UDE NNE PE

I1 0.01 0.07 0.3
I2 0.2 0.1 0.4

Table 4.4. Tempo models.

Tempo ν1 = ν3 ν2 q R

T1 10 40 0.5 5
T2 4 20 1 1
T3 10 20 1 1→ 4

of R. The figure shows the considerable flexibility that exists in shaping the PSD
with R. All of the maneuver mode chains have the same mean sojourn times and the
same stationary distribution. As we move from R= 1 (an exponential lifetime) to
R= 5 (a quasiperiodic process), the resonant peak of Φ(ω) increases significantly.
The power spectral densities shown in Figure 4.11 are not simply represented using
a low-order shaping filter. The curves can, however, be approximated using first-
(R= 1) or second- (R= 2 or R= 5) order LGM models, and this is done in what
follows.

The first two EKFs are radar exclusive, and the maneuver is treated as an additive
disturbance: white or colored. If the imager is used, the EKF framework can be
modified to utilize the new data. First the image data is translated into an estimate of
{αt} using the PME modal filter. The mean maneuver acceleration is added to the
increments in the velocity estimates. To achieve higher gains during and soon after
a turn, covariance modification is required. This is accomplished by augmenting
the base-state noise proportionally to the acceleration uncertainty as measured by
the variance of �t : An image-based pseudonoise is added to the target dynamics
proportional to var(�t) (see (4.11)) [HS92]. Through this simple artifice, the filter
gain is increased during transient intervals while remaining small at other times.
This estimator will be labeled EKF(γ ; q, R).

A more complete integration of the radar and the imager measurements is
achieved using the PME. The γ -renewal model for the maneuver process leads
to the algorithm PME(γ ; q, R). The PME algorithm depends upon the specific im-
ager and a maneuver model used in the encounter. The characteristics of two imagers
are given in Table 4.3. Three different scenario models are presented in Table 4.4.

Let us look first at the maneuver mode estimation of Imager I1 and Tempo
T1. Figure 4.12 shows a sample average of {�̂t} as computed by PME(γ ; q =
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Figure 4.12. Turn rate estimates for PME(γ ; 0.5, R).

0.5, R) as R varies from 1 to 5. All maneuver models have the same intrinsic state
space and modal lifetimes. They differ only in the shape of the sojourn density
selected to describe the turn. During the initial coast phase, all PMEs are good
and �̂t ≈ 0. The turn begins at t = 10, but it cannot be recognized until t = 11
because the target heading must first traverse the initial angular bin. Crossing a bin
boundary is recognized by all the PMEs as connoting a turn and all so indicate. In
the interval [10, 20) the target has a constant turn rate. The modal-state processor
uses bin crossings to identify turns. Consequently, as {ρt} moves across a bin, all
the estimators produce a decay in {�̂t} with a decay rate that is determined by Q.
At first the decay rate is far bigger in PME(γ ; 0.5, 1) than it is in PME(γ ; 0.5, 5):
A Markov model generates more short sojourns than does the R = 5, γ -renewal
process. A quick return to coast is not unexpected if R = 1. The roles are reversed
when t = 20 s: �̂20 is bigger for PME(γ ; 0.5, 5) than it is for PME(γ ; 0.5, 1)
because the (R = 5)-renewal process is expecting a return to coast relatively soon
while the Markov process does not keep track of elapsed time. After return to coast
(∼20 s), PME(γ ; 0.5, 5) is much faster than PME(γ ; 0.5, 1) in identifying it.

There are several choices for algorithms that actually track this target. Consider
first some of the variants on the EKF:

• EKF(W=0.1): This algorithm neglects the maneuver. It is the simplest with
base-state dimension four.

• EKF(Φ(ω); q = 0, R = 5): This uses the tempo model to determine the
correct shaping filter. The dimension of this filter is six. To sensitize the
algorithm to turns, the value of q has been reduced to q = 0.

• EKF(γ ; q = 0.5, R = 5): This uses the image path to adjust the gain and
the drift in the EKF.

Rather than looking at the sample paths of the algorithms, consider their biases.
In LGM estimation, we expect {x̂t} to be centered about {xt} with a sample path
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Figure 4.13. Path following bias from EKF(W=0.1), EKF(�(ω); 0, 5), and EKF(γ ;
0.5, 5).

deviation of size related to {Pxx}. Earlier examples showed this not always to be
true: An unmodeled feature of the path (a turn) causes a bias in the estimate. Figure
4.13 shows this bias clearly. Twenty-sample averages of the paths of three different
EKFs are displayed with the true path as a reference.
EKF(W =0.1) seems nearly oblivious to the turn. It is slow to detect a turn when

it occurs. It loops out with a 90 m error. When the target returns to coast, and the
correct motion mode underlies the EKF, the small gain in EKF(W=0.1) prolongs
the post maneuver return to the coast path. Indeed, it is so slow to correct for the
turn that there is considerable excess error at the end of the simulation.

Adding colored noise to the model improves performance at the cost of in-
creased filter dimension. EKF(Φ(ω); 0, 5) is an improvement over EKF(W=0.1).
The maximum error during a turn is reduced by a factor of three. Interestingly, the
post maneuver return to the coast is still unsatisfactory. This is due to the fact that
an LGM shaping filter does not generate sample paths that mimic {�t} and the
modal estimate in EKF(Φ(ω); 0, 5) is not good. Failure to resolve the turn in an
expeditious manner leads to the protracted meander at the end of the turn.

Of the three estimators, the image-enhanced algorithm, EKF(γ ; 0.5, 5), is best
able to balance the conflicting demands imposed by this multimodal tracking en-
vironment. The errors are much less in the turn. A peculiar bias arises after return
to coast. The estimate generated by EKF(γ ; 0.5, 5) continues to follow a turn for
so long that it overshoots when the target returns to coast. The overshoot is due
to the delay in determining the end of the turn from the image information (see
Figure 4.12). Covariance augmentation raises the gain after the turn ends and this
causes the tracking error to decay. But the decay is slow because of the failure of
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the gain augmentation to remain high enough long enough; var(αt ) becomes small
before the turn-induced errors are eradicated. This leads to the dilatory return to the
coast path. To refine this adjustment, a more careful computation of the covariance
process is necessary, and this is provided by the PME.

To demonstrate the performance improvement attainable with thePME, consider
the same path with tempo model T2 and imager I2. This is a Markov maneuver
model. The lifetimes are shorter. This makes the recognition of a return to coast
comparable with the Markov estimate shown in Figure 4.12. Recognition is also
improved by telling the algorithms that a coast must follow a turn: q = 1. The imager
is also somewhat better with a smaller NNE.

Consider the following trackers:
• EKF(W=0.1): This is again the simplest tracker and is not influenced by

the changes in the imager and the tempo models.
• EKF(γ ; q = 1, 1): This uses the faster tempo model and the imager is

improved.
• PME(γ ; q = 1, 1): This uses the image path to adjust the gain and the drift

in the EKF.
The effect of these changes in the maneuver model are shown in Figure 4.14.

A twenty-sample average of the path estimates is shown along with the true path.
The response of EKF(W=0.1) is as it was in Figure 4.13: EKF(W=0.1) is not
influenced by the maneuver model. EKF(γ ; 1, 1) responds more quickly to the
motion, but this is due primarily to the improved imager. EKF(γ ; 1, 1) retains the
slow decay to the true path at the end of the experiment.

The PME has much smaller bias even though it utilizes the same {α̂t} as does
EKF(γ ; 1, 1). The overshoot and slow return to coast observed in EKF(γ ; 1, 1)
is avoided by the PME. The average radial errors are displayed in Figure 4.15.

Figure 4.14. Path following bias from EKF(W=0.1), EKF(γ ; 1, 1), and PME (γ ; 1, 1).
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Figure 4.15. Average radial error for EKF(W=0.1), EKF(γ ; 1, 1), and PME(γ ; 1, 1).

EKF(W=0.1) is unacceptable. The terminal response of PME(γ ; 1, 1) is seen to
be far better than that of EKF(γ ; 1, 1).

High quality estimates of velocity are important in applications that require
accurate prediction of future target position (e.g., fire control or guidance). The
simplest predictors extrapolate from the current location estimate in the direction
of the current velocity estimate. Velocity errors therefore produce sizable errors in
predicted position if the prediction interval is large.

Figure 4.16 shows sample mean velocity profiles of the three trackers in the
velocity plane. Velocity is a slack variable in the estimation algorithms. It is included

Figure 4.16. Average velocity profiles forEKF(W=0.1),EKF(γ ; 1, 1), andPME(γ ; 1, 1).
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in the base-state model, and the algorithms estimate its value concurrently with es-
timates of the location variables. But since there is no direct velocity measurement,
the trackers tend to assign observation residuals to velocity to a much greater degree
than one might expect. This is true to some extent during the nonmaneuvering phase,
but the effect is magnified during a maneuver.

In this scenario, there is conspicuous misidentification of the velocity, with
EKF(W=0.1) failing even to recognize the correct sense of rotation. EKF(γ ; 1, 1)
is better but is still far from the true path. PME(γ ; 1, 1) does a much better job of
following the velocity contour than do either of the EKFs, but even the PME makes
significant errors in tracking velocity.

The velocity estimates can be improved to some degree by more careful tempo
modeling. Let us return to imager I1 and use tempo T3 to delineate the maneuver
process.

Consider now the following trackers:
• EKF(γ ; q = 1, R= 1): This uses the Markov model to produce the image-

based corrections.
• EKF(γ ; q = 1, R= 4): This uses the γ -renewal model to produce the

image-based corrections.
• PME(γ ; q = 1, R= 1): This uses the Markov model for sensor fusion.
• PME(γ ; q = 1, R= 4): This uses the γ -renewal model for sensor fusion.

Figure 4.17 shows the average track bias for the last three algorithms. The PME

with the renewal model most descriptive of the encounter is the best performer.

Figure 4.17. Path following bias from EKF(γ ; 1, 4), PME(γ ; 1, 1), and PME(γ ; 1, 1).
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Figure 4.18. Average speed errors for EKF(γ ; 1, 1), EKF(γ ; 1, 4), PME(γ ; 1, 1), and
PME(γ ; 1, 1).

The improvement over the Markov PME is not great however. For the EKFs,
the performance improvement associated with a γ -renewal model is consider-
able. EKF(γ ; 1, 1) (not shown) has twice the overshoot of EKF(γ ; 1, 4). Still,
EKF(γ ; 1, 4) is inferior to the simplest PME.

The radial error has a double peak, with maximum errors subsequent to the initi-
ation of the turn and to the cessation of the turn. Figure 4.18 shows corresponding
speed error profiles, and the curves for the EKFs are not nearly as good as those
for the PMEs. Both of the PMEs have about the same maximum speed errors, but
PME(γ ; 1, 4) reduces the error much faster than does PME(γ ; 1, 1).

Performance improvement of PME(γ ; 1, 4) must be balanced against its com-
plexity (i.e., R). Though not shown, the relative response of {α̂t} for longer or
shorter sojourns is easily found. For off-nominal conditions, PME(γ ; 1, 4) is sur-
prisingly robust. The path of {Pxx} computed for PME(γ ; 1, 4) differs little from
that computed for PME(γ ; 1, 1) [SV94]. The improvement in PME(γ ; 1, R) with
R derives more from the more accurate computation of the mixed moment, Pxφ .

This example illustrates the use of a γ -renewal model for the maneuver modes.
Parasitic effects also make the sojourn times in an angular bin random even when
the nominal turn rate is known. Further, the finite state space for acceleration is an
abstraction used to describe what is actually a continuum of possible actualizations.
For example, a1 is but a single element in an interval (bin) of rotation rates; a1 is close
to, but likely not equal to, the actual value of�t when�t is in the a1 bin. In the basic
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PME, the orientation bin sequence is assumed to be a Markov process for a specific
turn rate. Suppose �t = am > 0. The Markov model presents target orientation as
remaining in an angular bin with an exponentially distributed residence time (mean
2π

Lam
), after which the bin indicator process, {ρt}, transitions ek �→ ek+1; the faster

the turn, and/or the smaller the bin, the shorter the mean time within the bin, with
the direction fixed by the sense of the turn. This representation for bin sojourns
has an obvious weakness: Exponential distributions have an excess of very short
and very long lifetimes. While the Markov bin model has proven to be serviceable,
it does not manifest the quasi-periodicity underlying the angular motion well; for
example, if the frame rate is high, the orientation is unlikely to enter a bin at one
frame time and exit it the next, but the exponential model masks this trait.

It is possible to create a more realistic sojourn model for target orientation by
using aγ -renewal process for the bin sojourns. To adjust thePME for this orientation
model, first fix the turn rate (e.g.,αt = em). Select a γ -density (with parameters (λm ,
R), the latter integer valued) that best describes the sojourn times associated with
an angular bin residence for the given acceleration. R could depend upon the turn
rate (i.e., m) too, but the changes that result from this generalization are transparent.
Partition the sequence of integers RL into L , equally spaced, contiguous blocks:
A = A1∪. . .∪AL ; A1 = {1, . . . , R}, A2 = {R + 1, . . . , 2R}, and so on. The
orientation model replaces each substantive angular bin with R sub-bins; that is,
as the orientation moves across a single true bin (the kth say), the model has it
traverse R ersatz bins (labeled Ak). Let {rt} be an R-dimensional indicator. In this
new framework, the orientation is given by the unit vector ρt ⊗ rt , the former
denoting the true angular bin, and the latter, the sub-bin. To preserve the mean
angular change of the target, the mean time in each of the sub-bins must be reduced
by the factor R (λm = 2π

RLam
). The joint (acceleration× orientation) process is now

Markov even for the γ -renewal residence times, albeit in a state space of higher
dimension: The maneuver state of the target is φt = αt ⊗ ρt ⊗ rt . The transition
rate matrix for the orientation model associated with the mth maneuver mode can
be deduced in a direct manner, and the PME follows [SBCV99].



5
Hybrid Plants with Base-State
Discontinuities

5.1 Plant State Discontinuities

Analytical design of complex dynamic systems is based upon a formal mathematical
description of the plant and the observations. A flexible representation of plant
evolution phrases the plant state in terms of a set of nonlinear stochastic differential
equations:

dχt = f(χt , υt ,Φt) dt + g(χt , υt ,Φt) dwt , (5.1)

where {υt} is the plant input, and {χt} is the plant state.
Unfortunately, Equation (5.1) does not provide a particularly hospitable frame-

work for the synthesis of algorithms for estimation and control. For this reason, in
hybrid synthesis the single plant model is replaced with the pair of equations:

base-state model

dxt =
∑

i

(Ai xt + Bi (ut − υφt) dt + Ci dwt)φi

+
∑
i,l

(M(i, l)xt + (χi −χl)+M(i, l)χi + ρ(i, l))φi e′l�φt , (5.2)

modal-state model

dφt = Q′φt dt + dmt . (5.3)

It is in the interplay of these dissimilar processes that hybrid estimation takes on
its peculiar flavor.

The observations are matched to the zygostate processes:

base-state measurement

y[k] = Hχ [k]+ n[k], (5.4)

117
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modal-state measurement

dzt = λPφt dt + dηt . (5.5)

In the previous chapter, we considered one version of the hybrid estimation
problem:

• The endogenous actuating signal was absent: υt ≡ 0.
• The base-state sample paths were continuous: M(·, ·), ρ(·, ·), and χ were

all zero.
These restrictions had the effect of reducing the base-state equation to

dxt =
∑

i

(Ai xt dt + Ci dwt)φi . (5.6)

The plant state set points were equal to zero and this avoided the modal-state
contamination of the base-state observation

y[k] = H x[k]+ n[k].

In the problem of tracking a maneuvering target, the PME proved to be a good
fusion algorithm. The sample paths of { x̂ t} and { φ̂t} followed the underlying state
paths rather well.

The advantageous performance of the PME stems from the fact that the PME

computes a relevant set of zygostate cross moments. For example, {Pxφ} assimilates
the motion geometry and allows the image measurements to be integrated into the
base-state update. This image information is particularly important near the time
of regime change events. The Kalman filters failed to follow even the base-state
path because their gains did not adapt to changing regime conditions. The Kalman
estimates tended to drift from the true path over time, and the base-state error
became so large that it exceeded the tracking window width.

In this chapter, we will study an estimation problem that is in many ways more
challenging: The plant experiences a base-state discontinuity at a change in regime.
For example, a hostile target may use motion discontinuities to enhance the delete-
rious effect of changes in maneuver mode and to bring about degraded estimation
accuracy. When the base-state discontinuities are hidden in the plant state measure-
ments by the conflated modal estimation error, the plant state path becomes even
more difficult to resolve.

To be specific, return to the base-state model and again assume that there is no
endogenous control:

dxt =
∑

i

(Ai xt dt + Ci dwt)φi +
∑
i,l

(M(i, l)xt + (χi − χl)

+ M(i, l)χi + ρ(i, l))φi e′l�φt . (5.7)
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As before, we wish to fuse the measurement sequences so as to generate a good
estimate of the plant state, {χ̂t}, along with relevant higher moments.

The PME provides a fusion algorithm, but the comprehensive implementation
is quite complex. In this chapter we will study three specializations of the plant-
observation framework. In each, a different kind of discontinuity is isolated. These
individuated cases will provide insight into the influence of discontinuities and will
suggest approximations useful when the PME cannot be fully implemented.

Suppose {φt}makes the transition ei �→ e j ; i �= j . The three specializations are:
• plant state rotation: �xt = M(i, l)xt ,
• plant state translation: �xt = (ρ j − ρi )

′,
• Variable set point: �xt = χi − χ j .

5.2 Plant State Rotation

Although a base-state model with continuous paths is representative of certain
applications, there are situations in which the regime transition creates plant state
discontinuities (e.g., an aircraft may slow when it executes a turn). Suppose the
plant state reference points are zero (χ= 0). The base-state model, (5.7), becomes

dxt =
∑

i

(Ai xt dt + Ci dwt)φi +
∑
i,l

M(i, l)xt(Qil dt + dml)φi . (5.8)

Equation (5.8) is nonlinear both within and between modes with a discontinuity:
If {φt} transitions ei �→ el, then �xt =M(i, l)xt . The PME algorithm can be simp-
lified in this application [SB97a]. Again let

Ai = Ai +
∑

l

Qil M(i, l).

We then have:

the PME : base-state rotation; χ = 0

Between observations:

d

dt
φ̂t = Q′ φ̂t ,

d

dt
x̂ t =

∑
i

Ai Rxφi ,

d

dt
Pxφ =

∑
i

(
Ai P(xφi )φ +

∑
l

Qil M(i, l)Rxφi e
′
l

)
+ Pxφ Q,
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d

dt
Pxx =

∑
i

(
Ai P(xφi )x + (·)′ + Rχ(i) φ̂i

+
∑

l

Qil M(i, l)Rxxφi M(i , l)′
)
,

d

dt
Pxxφm =

∑
i

((
Ai P(xφi )xφm + Qim P(xφi )x M(i,m)

)
+ (·)′ + Rχ(i)Pφiφm + Qim

(
Pxxφi

+ M(i,m)
(

P(xxφi )φm + Rxxφi

)
M(i,m)

))
. (5.9)

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

� x̂ = Pxφ�ϑ,

�Pxφ = −� x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx = −� x̂� x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −� φ̂m� x̂� x̂ ′ −� φ̂m P+xx −� x̂ P+φm x − P+xφm
� x̂ ′

+
∑

k

Pxxφmφk�ϑk . (5.10)

At a base-state observation:

� x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γx . (5.11)

Equations (5.9)–(5.11) give the zygostate estimator for a system with rota-
tional discontinuities. The structure of the algorithm is identical to that presented
in Section 4.3, but (5.9) has an internal modification: Ai �→Ai . This change is
not unexpected. The drift in { x̂ t} is adjusted by adding the mean discontinuity
E[
∑

il M(i, l)Qil xtφi |Gt ]. The canonical moments all have the same replacement
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for {Ai }, but they are influenced by the jump in {xt} in additional ways. Because
each of the higher moments satisfies a nonlinear stochastic equation, it is difficult to
give a natural rationale for the size of the discontinuity-induced changes. However,
some insight into the impact of the base-state jump can be gained by looking at
individual terms in the moment equations that arise from a base-state discontinuity.

Pxx : The base-state error covariance satisfies an equation with a structure
like that found in Section 4.3 with an adjustment in one term and the
addition of another:

d

dt
Pxx = · +

∑
i

(
Rχ(i) φ̂i +

∑
l

Qil M(i, l)Rxxφi M(i, l)′
)
.

The base-state is exposed to two types of exogenous disturbance. The
Brownian motion leads to the term

∑
i Rχ(i) φ̂i . This is a routine sub-

stitution in which the (conditional) mean intensity of the Brownian mo-
tion replaces the fixed intensity. The term

∑
il Qil M(i, l)Rxxφi M(i, l)′

is more subtle. It provides an additive, positive increment to the noise
intensity. This contribution is related to both the rates of different jumps
(quantified by Qil) and the expected product of the base-state disconti-
nuities (quantified by M(i, l)Rxxφi M(i, l)′).

Suppose that there is a good estimate of the modal state: φ̂t ≈ er. In
this case, the contribution due to the discontinuity reduces to

d

dt
Pxx = · + Rχ(r)+

∑
l

Qrl M(r, l)Rxx M(r, l)′.

The influence of Brownian motion is augmented by another positive
term: an outer product of the jumps expected in {xt} weighted by their
size (Rxx ). This term can be likened to the well-known pseudonoise
augmentation, though it should be noted that the increase in Pxx is ob-
servation dependent. When the modal estimate is not good, the same
argument holds, but there is a blending of the modal- and base-state in
P(xφi )x and Rxxφi .

Pxφ: The second mixed moment is particularly important in the PME be-
cause it acts as the gain for the modal measurements in (5.10). Com-
paring (5.9) with the analogous equation in Section 4.3, we see that the
immediate contribution of the discontinuity to {Pxφ} is

d

dt
Pxφ = · +

∑
i,l

Q′
il M(i, l)Rxφi φ̂i e

′
l .
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Again suppose that there is a good estimate of the modal state: φ̂t ≈ er.
The contribution to {Pxφ} due to the discontinuity reduces to

d

dt
Pxφ = · +

∑
l

Qrl M(r, l) x̂ t e′l .

The discontinuity leads to a term that is essentially a product of in-
dependent factors in the spatial variable (M(r, l) x̂ t ) and in the modal
variable (Qrle′l). As in {Pxx} there is a blending of these effects when φt

is not precisely known.
Pxxφm : This third mixed central moment appears in numerous places in

the PME . It quantifies the relation between modal errors and the base-
state covariance (e.g., it is the modal-measurement gain in Pxx ). Again
looking only at the terms that depend on the state discontinuity, we have

d

dt
P xxφm = · +

∑
i

((
Qim P(xφi )x M(i,m)

)+ (·)′

+ Qim M(i,m)
(

P(xxφi )φm + Rxxφi

)
M(i,m)

)
.

This combination of terms is hard to motivate in general. Again suppose
that there is a good estimate of the modal state: φ̂t ≈ er. The dominant
terms in the relevant moments are P(xφi )x ≈ Pxx , Rxxφi ≈ Rxx , and
P(xxφi )φm ≈ 0. In this case, the contribution due to the discontinuity
reduces to

d

dt
P xxφm = · + (Qrm Pxx M(r,m))+ (·)′ + Qrm M(r,m)Rxx M(r,m)′.

This term becomes even simpler in the most common situation in
which Rxx � Pxx :

d

dt
P xxφm = · + Qrm M(r,m)Rxx M(r,m)′.

5.3 A Maneuvering Aircraft with Variable Drag

To illustrate the behavior of thePMEwith plant state rotation, return to the example
presented in Section 1.2. A target is detected at a range of 3.6 km (t = 0) traveling
in the X–Y plane at a speed of 300 m/s. The target coasts for three seconds, makes
a 7 g turn for six seconds, coasts for two seconds and makes a 7 g turn in the other
direction for five seconds, and then returns to coast. A turn causes the target to slow
by 40% of the speed that it has entering the turn with a 40% increase in speed when
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Table 5.1. Error parameters for
imager IG.

Imager UDE NNE PE

IG 0.05 0.05 0.1

a turn transitions to coast. A motion model is given in (1.24):

d


X
Y
Vx

Vy

 =


0 0 1 0
0 0 0 1
0 0 0 −�
0 0 � 0




X
Y
Vx

Vy

 dt +


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
,

where (X, Y ) are position coordinates, and (Vx , Vy) are the associated velocities.
The target acceleration is a wide band, omnidirectional acceleration described by
the Brownian motion {wx , wy} summed with the maneuver acceleration represented
by the turn rate process {�t}. The speed is slowly varying when the turn rate is
constant: Ci = e2 ⊗ I2 for all i , and W = I2. The jinking behavior is captured
by

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.
With this ordering, αt ∈ {e1, e2, e3} and the turn rate is given by �t = a′αt .

At the origin of the coordinate system there is a radar and collocated imager. The
radar measures the position of the target every second with Gaussian errors of 40 m
in range and 1.75 mr in bearing. The imager model is that given in IG in Table 5.1.
The sample rate is 10 frames/s; the bin width is 30◦.

The most straightforward approach to this tracking problem would be to neglect
the turn process and design a radar-exclusive EKF based upon the specification of
radar quality given above. This was done in Section 1.2 and the filter was labeled
EKF(W=1). The initial covariance is taken to be diagonal with standard deviation
in position (100 m) and velocity (20 m/s). Figure 5.1 shows the response of a sample
path of the target along with the one-σ error ellipses centered on the estimate as
generated by EKF(W=1). (This is a composition of Figures 1.1 and 1.2, decimated
for clarity.) All of the algorithms are initialized on the true state.

To design the PME, the maneuver dynamics must be specified. Suppose the
mean sojourn in any maneuver mode is 5 s; that every turn ends in a coast (q = 1
in the notation of Chapter 4); and the chain is symmetric about coast. First look at
the performance of the PME developed in Chapter 4 (labeled PME(M=0) since
it ignores the speed changes). Figure 5.2 shows a sample of the tracking per-
formance. PME(M=0) is superior to EKF(W=1). The one-σ circles are closer
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Figure 5.1. The EKF(W=1) for a path with variable drag.
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Figure 5.2. The PME(M=0) for a path with variable drag.

to the path than those of EKF(W=1) and adapt better to changing conditions,
for example, by increasing their radius when a turn is suspected and decreasing
their radius during quiescent operation. The response of the PME lags the path
after the drag increases (compare with Figure 4.7), and the error circles still fail
to cover the path. PME(M=0) finds the deceleration confusing, but it is faster
than EKF(W=1) to correct the velocity estimate during the intermediate coast.
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Figure 5.3. The PME(M) for a path with variable drag.

On the final coast, PME(M=0) reduces the error more expeditiously than does
EKF(W=1).

The error ellipses of PME(M=0) fail to cover the true path both because of
irreducible lags in the modal-state-estimator (on the order of 2 s) and because it has
no reason to suspect that the speed will change at modal transitions. No image-based
estimator can do anything about the former because the target must rotate across a
bin boundary in order for a turn to be recognized. To alert the PME to the latter,
set

• M(i, l) = 0.6E2 ⊗ I2 if i = 2, l ∈ {1, 3},
• M(i, l) = 1.4E2 ⊗ I2 if i ∈ {1, 3}, l = 2,
• M(i, l) = 0 otherwise

Figure 5.3 (see Figure 1.6) shows the sample performance of this PME. There
is an increase in the area of the error ellipses following every modal transition,
but the ellipses are corrected reasonably well after the transition is identified. The
centers of the error ellipses are closer to the true path than either PME(M=0) or
EKF(W=1), and their radii are such as to consistently approach the true path (the
two-σ ellipses would encircle the path quite well). The radii of the ellipses display
considerably more adaptivity than those associated with PME(M=0).

Although mean radial error (MRE) is a reasonable index of estimator perfor-
mance, MRE for this multimodal path depends upon the phase of the path. Because
of the approximations involved, the computed error covariance is not a guaranteed
predictor of MRE. Figure 5.4 (see Figure 1.5) shows the mean radial error as calcu-
lated from a sample of size ten. Three filters are shown: EKF(W=1), PME(M=0),
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Figure 5.4. The mean radial error for EKF(W=1), PME(M=0), and PME(M) for a path
with variable drag.

and PME(M). Although the location sensor has a one-σ error radius of 75 m, the
estimation error grows to nearly 700 m when EKF(W=1) is used, and the estimator
is oblivious of this fact: Its computed {Pxx} is far too small. The superior perfor-
mance of the EKF(W=1) (∼15 s) is due to the fact that the path happens to pass
through the estimated path and not because EKF(W=1) is accurate in this interval.
PME(M=0) is superior to the EKF with maximum errors of 300 m for the most
part. PME(M=0) is unable to effectively extrapolate between radar measurements
because the speed changes confuse it. With a 400 m radar window at this range,
both estimators would lose lock.
PME(M) is superior to either of the others: It is somewhat worse on the initial

coast because of the omniscient initialization for the estimators and it is worse
than EKF(W=1) because of the conjunction of the paths in the second turn. The
MRE for PME(M) builds up during interradar intervals but not to the degree
found in PME(M=0). Since PME(M) requires little additional computation (over
PME(M=0)), it would be the algorithm of choice in this application.

5.4 Plant State Translation

The previous example shows how rotational discontinuities increase the difficulty
of estimation. In this section we will look at another class of discontinuities: plant
state translations. Again suppose the plant state set points are zero (χ = 0) and that
there is no endogenous control. When there is a modal transition, the base-state
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translates. Let ρ be a matrix with rows {ρi } (ρ = [ρi ] such that if {φt} makes the
transition ei �→ e j ,�xt = ρ ′j −ρ ′i ). This is a specialization of the translation array
{ρ(i, j); i, j ∈ S} introduced in Section 1.1. This type of behavior arises when there
is a null level and all translations are referenced to it. This distinctive form permits
the formulas for the PME to be simplified [SB97b].

The base-state model becomes

dxt =
∑

i

(Ai xt dt + Ci dwt)φi + ρ ′dφt . (5.12)

The PME is then written:

Between observations:

d

dt
φ̂t = Q′ φ̂t ,

d

dt
x̂ t =

∑
i

Ai Rxφi + ρ ′Q′ φ̂t ,

d

dt
Pxφ =

∑
i

(
Ai P(xφi )φ + V (ei ) φ̂i

)+ Pxφ Q + ρ ′Q′Pφφ,

d

dt
Pxx =

[∑
i

Ai P(xφi )x + ρ ′Q′Pφx)

]
+ (·)′

+
∑

i

(Rχ(i) φ̂i + ρ ′V (ei ) φ̂iρ),

d

dt
Pxxφm =

[∑
i

Ai P(xφi )xφm + ρ ′
(

Q′Pφxφm +
∑

i

V (ei ).m Pφi x

)]

+ (·)′ +
∑

i

(
Rχ(i)Pφiφm + Qim

(
Pxxφi

+ ρ ′
(
V (ei )Pφiφm +Um(ei ) φ̂i

)
ρ
))
. (5.13)

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

� x̂ = Pxφ�ϑ,

�Pxφ = −� x̂�φ̂′ +
∑

k

Pxφφk�ϑk,
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�Pxx = −� x̂� x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −�φ̂m� x̂� x̂ ′ −� φ̂m P+xx −� x̂ P+φm x − P+xφm
� x̂ ′

+
∑

k

Pxxφmφk�ϑk . (5.14)

At a base-state observation:

� x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γx . (5.15)

Equations (5.13)–(5.15) give thePME for a plant with translation discontinuities,
which we shall denote by PME(ρ). It is interesting to compare PME(ρ) with the
Kalman filter and also with the PME that does not acknowledge discontinuities
(PME(ρ = 0)). The term

∑
i Ai x̂ tφi in the Kalman filter is replaced by

∑
i Ai Rxφi

in both PMEs, and the term Rχ in the Kalman filter is replaced with
∑

i Rχ(i)φ̂i

in the PMEs. Additionally, in PME(ρ), the drift in { x̂ t} contains a term ρ ′Q′φ̂t

to reflect the expected discontinuity (an analogous term appears in PME(M=0)).
This term does not appear in PME(ρ = 0) but is plausible from the form of
(5.12).

Comparing (5.13)–(5.15) with similar equations in PME(ρ = 0), the influence
of the base-state discontinuity can be isolated. First, the update equations (5.14)
and (5.15) in PME(ρ = 0) are identical to those in PME(ρ). The discontinuity
enters into PME(ρ) only in the equations that propagate the moments between
measurements.

Pxx : The inclusion of a discontinuity introduces the following terms into
the equation for the base-state error covariance:

d

dt
Pxx = · + ρ ′Q′Pφx + Pxφ Qρ + ρ ′

∑
i

V (ei ) φ̂iρ.

One effect of the discontinuity is to increase the intensity of the exoge-
nous disturbance. This is reflected in ρ ′

∑
i V (ei ) φ̂iρ. The paired terms,

ρ ′Q′Pφx + Pxφ Qρ, relate the base-state covariance to the correlation of
the modal- and base-state error. Note that if the modal estimator has a
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high quality ( φ̂t ≈ er), (5.14) reduces to

d

dt
Pxx = · + ρ ′V (er ) φ̂rρ,

a near analogue to the white noise equivalent of the jump discontinuity.
This term reflects the obvious need to account for the sudden change
in the base-state, and within an LGM framework, the exogenous distur-
bance is represented as additional white noise. Of course the terms and
updates involving the modal measurement never appear in the Kalman
filter since the modal-state is ignored in the LGM model.

Pxφ: The mixed moments do not appear in the Kalman filter. Comparing
PME(ρ) with PME(ρ = 0), we see that the discontinuity adds the terms

d

dt
Pxφ = · + ρ ′Q′Pφφ +

∑
i

V (ei ) φ̂i .

The change in d
dt Pxφ is related to both the frequency of jumps (Q, V (ei ))

and their size (ρ). Again suppose that there is a good estimate of the modal
state (φ̂t ≈ er). In this event, the contribution due to the discontinuity
reduces to

d

dt
Pxφ = · + ρ ′V (er ) φ̂r .

Pxxφm : This moment quantifies the relation between modal errors and the
base-state covariance. Again looking at the terms that depend on the state
discontinuity, we get

d

dt
P xxφm = · +

(
ρ ′
(

Q′Pφxφm +
∑

i

(
V (ei ).m Pφi x

)))+ (·)′

+
∑

i

Qimρ
′(V (ei )Pφiφm +Um(ei ) φ̂i

)
ρ.

The rationale behind this combination of terms is hard to fathom,
but again suppose that there is a good estimate of the modal-state. The
dominant term due to the discontinuity is simply

d

dt
P xxφm = · + Qrmρ

′Um(er)ρ,

the square of the base-state jump (ρ ′ · ρ) times a factor related to its
likelihood (QrmUm(er)).
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5.5 A Maneuvering Aircraft with Sudden Translations

The examples in Chapter 4 have shown that when the base-state path is continuous,
an oblique measurement of the regime may suffice. For example, the intrinsic regime
variable for the maneuvering target in Chapter 4 was turn rate (i.e., {αt}). The
image measurement was not sensitive to {αt} but rather to its integral: The change
in angular orientation is used to infer turn rate. The error in {α̂t} produced a drift
in {x̃t} slow enough that satisfactory tracking could be accomplished. The modal×
base-state cross gain contained sufficient information on motion geometry to avoid
losing the target. However, when the path is discontinuous, the lag inherent in an
orientation measurement may be unacceptable and a direct regime measurement
may be required.

To illustrate the advantage of including the translation dynamics in the motion
model, return to the maneuvering aircraft studied earlier but now give it the capa-
bility to translate suddenly. As before, a missile approaches at nearly constant
altitude and a speed of 300 m/s with detection at a range of 35 km. Let us look
only at the first 7 g turn to the right with return to coast. When the missile turns,
it simultaneously translates 200 m in the Y direction. The position discontinuity
accentuates the turn as seen from the sensor. After turning for 6 s, the missile returns
to the coast mode and reverses the discontinuity.

The proposed motion is, of course, only an approximation to an actual path. A
missile can neither change its angular rate nor its position discontinuously. A 200-m
translation would require a 40 g acceleration even if achieved in 1 s. Nevertheless,
this motion provides an approximation to an irregular path. Also, with the extended
final coast, this path provides the opportunity to determine how well the trackers
readjust to quiescent operation.

The sensor suite contains the radar we have used before, but its sample rate
is slower; the standard errors are 40 m in range and 1.75 mr in bearing, and the
interdwell time is 2 s. Again, the EKF selected for comparison, EKF(W=1), is
found by neglecting the maneuvers. A sample of the path is shown in Figure 5.5
along with a performance plot of EKF(W=1). As has been the case, the EKF is
not adequate in this application. EKF(W=1) tracks well into the first turn. But the
discontinuity at the turn is reflected immediately in the tracking error. The radar
measurement at t = 4 s improves things, but the errors grow because the velocity
has not been properly determined: The EKF tacks away from the turn and the
translation compounds the problem. After return to coast, EKF(W=1) gradually
identifies the missile velocity. But even at the end of the part of the path shown, the
error is quite large.

Now add a modal sensor to the suite. It will be assumed that this latter measures
the azimuth angle of the missile (an imager) with frame rate λ = 10 frames/s. The
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Table 5.2. Modal sensor
parameters.

Error Type Probability

UDE 0.1
NNE 0.1
PE 0.3
ME 0.2
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Figure 5.5. The EKF(W=1) for a path with translation.

image classifier again uses 30◦ bins and its errors are intermediate between imager
IG and imager IP in Table 4.1. The error parameters are given in Table 5.2. (With
the usual assumptions, the standard deviation of orientation classifier is 76◦.)

Additionally, thePME avails itself of a direct maneuver measurement. The trans-
lational acceleration might be distinguishable from some peculiarity in measured
image or the thruster might have a distinctive spectral resonance. Errors in maneu-
ver classification (labeledME) will be assumed to be uniform across the appropriate
bins (see Table 5.2).

To synthesize PME(ρ) the maneuver modes are described as before:

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.
The mean sojourn time in each of the maneuver states will be assumed to be 5 s, with
each turn being followed by a coast. From coast, the turns are equally likely. The
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Figure 5.6. The PME(ρ) for a path with translation.

initial maneuver modes will be assumed to be equally likely. From this PME(ρ)

can be deduced.
Figure 5.6 shows the performance plot ofPME(ρ). Before the first turn,PME(ρ)

is worse than EKF(W=1): The EKF is oblivious of the possibility of a turn and
will perform quite well if no turns occur. PME(ρ) recognizes (with some delay) the
turn and the associated discontinuity in position. As the turn progresses, PME(ρ)

biases its error in the direction that will make the transition to coast easier. So the
return to coast creates less error.
PME(ρ) uses a better algorithm for computing {Pxx} than does the Kalman filter,

EKF(W=1). The error ellipses of EKF(W=1) are smaller than those of PME(ρ).
This indicates that the EKF imagines itself to be doing a good job. But the EKF
is deluding itself. The true path is not within the 1-σ ellipses after the turn begins
(or the 2-σ or even the 5-σ in some cases). PME(ρ), as befits its recognition of the
uncertainty created by maneuvers, has larger ellipses and in the main they encircle
the true path. It is interesting to note that after the maneuver transition events, the
PME(ρ) error ellipses grow significantly. The computed error variance of PME(ρ)

is thus responsive to changing conditions.
Neglecting the path translations leads to a slightly simpler tracker. Figure 5.7

shows the performance plot ofPME (ρ = 0).PME (ρ = 0) tracks well through the
turn, but it has difficulty recovering on the final coast. PME(ρ) biases its estimates
in preparation for a modal transition, while PME (ρ = 0) does not. This bias is
not an unmixed blessing, but the error ellipses generated by PME(ρ) are more
representative of the uncertainty than are those generated by PME (ρ = 0).
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Figure 5.7. The PME(ρ = 0) for a path with translation.

PME(ρ) is somewhat more complicated than the basic PME(ρ = 0). The lat-
ter acknowledges the possibility of a turn but is blind to the path discontinuities.
Figure 5.8 shows the mean radial tracking errors for the two PMEs. The figure
was generated as the sample average of ten independent runs. Certain aspects of
PME(ρ) are apparent from the graph. With perfect initialization, both PMEs begin
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Figure 5.8. The mean radial error for EKF(W=1), PME(ρ = 0), and PME(ρ) for a path
with variable drag.
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with small error, but PME(ρ= 0) is superior since it expects no jump changes and
none occur. (The increase in error at t = 2 s is created by a radar measurement
moving both PMEs away from their omniscient initialization.) Both trackers expe-
rience an unavoidable increase in error after the turn, at t ≈ 3 s. PME(ρ), with its
sophisticated modal measurements, is better during the turn but not uniformly so.
As the turn progresses, PME(ρ) biases its error to prepare for the return to coast.
After the transition, at t ≈ 9 s, PME(ρ) is again far superior. Note that both of the
PMEs keep their errors much closer to the 80 m radar error than does EKF(W=1)

even though all of the trackers have a two-second interdwell time: The 80 m/sample
radar error accumulates in the EKF to around 800 m. The radar actually loses lock
at about 400 m, and at this range EKF(W=1) would experience loss-of-lock.
PME(ρ) increases its gains during times of modal uncertainty and is quicker

to respond during the post-transition intervals without simultaneously increasing
amplification of the observation noise during quiescent periods. Even severe motion
anomalies can be countered by improved modeling and sensor integration.

We conclude that:
• Proper integration of modal measurements significantly improves tracking

performance as compared to the EKF.
• The maximum tracking error using PME(ρ) is much smaller than that

associated with a tracker that ignores the discontinuities, PME(ρ = 0).
• The PME(ρ) has a better idea of its own errors and hence is more suitable

for use in a measurement-adaptive implementation.

5.6 Variable Set Points

The previous examples show clearly the influence of plant state discontinuity. Al-
though abrupt state changes create a significant problem even when there is a direct
modal measurement, at least the discontinuity is reflected in the base-state obser-
vation and can be used to correct the estimate. In this section we will look at a
system with a continuous plant state process, but having a set point that changes
with regime: χ �= 0. Again, we will ignore the endogenous control.

The plant state is continuous, but this does little to simplify things. The modal
change is now hidden in the base-sate measurement. Also, when there is a modal
transition, the base-state is discontinuous: If {φt} makes the transition ei �→ e j ,

�xt = χi − χ j .
This type of discontinuity has the form studied in the previous section (it is a

simple translation). But the base-state observation is contaminated, and it is difficult
to determine the correct innovations increment. The base-state equation is

dxt =
∑

i

(Ai xt dt + Ci dwt)φi − χ dφt . (5.16)
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The base-state observation is

y[k] = Hχ [k]+ n[k],

where χ [k] �= x[k]. The PME (PME(χ)) becomes:

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂ t =

∑
i

Ai Rxφi − χQ′φ̂t ,

d

dt
Pxφ =

∑
i

(
Ai P(xφi )φ + V (ei ) φ̂i

)+ Pxφ Q − χQ′Pφφ,

d

dt
Pxx =

(∑
i

Ai P(xφi )x − χQ′Pxφ

)
+ (·)′

+
∑

i

(
Rχ(i)+ χ

∑
i

V (ei )χ
′
)
φ̂i ,

d

dt
Pxxφm =

(∑
i

Ai P(xφi )xφm − χ

(
Q′Pφxφm −

∑
i

χV (ei ).m Pφi x

))

+ (·)′ +
∑

i

(
Rχ(i)Pφiφm + Qim

(
Pxxφi + χ

(
V (ei )Pφiφm

+Um(ei ) φ̂i
)
χ′
))

. (5.17)

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

� x̂ = Pxφ�ϑ,

�Pxφ = −� x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx = −� x̂� x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −� φ̂m� x̂� x̂ ′ −� φ̂m P+xx −� x̂ P+φm x − P+xφm
� x̂ ′

+
∑

k

Pxxφmφk�ϑk . (5.18)
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At a base-state observation:

� x̂ = γx�νx ,

�Pxφ =−γx H Pχφ,

�Pxx =−γx Rχχγ
′
x ,

�Pxxφm =−γx H Pχχφm − Pχχφm H ′γx . (5.19)

The base-state estimator in PME(χ) differs from the Kalman filter in the usual
ways: The expected discontinuity (−χQ′φ̂t ) is added to a term utilizing the corre-
lation of φt and xt ; the gain depends on the covariance Pχχ (rather than on Pxx ); the
filter gain is Pxχ H ′Dχχ rather than Pxx H ′Dxx . The update equations are identical
in form to previous algorithms with the base-state innovations replaced by

ν[k] = y[k]− H( x̂[k]+ χ φ̂[k]).

These changes appear innocuous but they mask the significant increase in difficulty
in estimation.

5.7 Estimating the Temperature of a Solar Panel

To illustrate the performance of PME(χ), consider a specific example. On the
California desert stands a 10 MWe solar electric generating system. Movable mirrors
(heliostats) are used to focus the sun’s energy on a group of boiler panels on a central
tower. A steam temperature regulator controls the feedwater flow rate to the panels
so as to maintain the proper temperature of both the outlet steam and receiver panel
itself.

On a partly cloudy day the insolation changes suddenly and unpredictably. The
panel dynamics change as well: At low insolation, the panel dynamics are slow; at
high insolation, the panel dynamics are fast. Let τm be the panel metal temperature
perturbation variable. (The nominal metal temperature of the panel must be added
to τm to obtain the actual metal temperature, Tm .) A first-order model of the panel
is given by

dτm = αφτm dt + βφ dwt , (5.20)

where the coefficients depend upon insolation (i.e., φt ) and {wt} is phrased in terms
of an equivalent flow rate (lb/min of feedwater).

In a study of the control of the panel subsystem, Tm was assumed to be measured
without error [SR83]. A more accurate description of the panel would include the
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Table 5.3. Panel coefficients.

Mode Insolation υ χ α β a

e1 1.8× 105 BTU/min 186 lb/min 1,017◦F −1.8 1.58 .9
e2 2.7× 104 BTU/min 30 lb/min 1,000◦F −0.36 1.9 .25

dynamics of a metal-temperature sensor with output Tc. We can represent this sensor
with a first-order lag,

d

dt
Tc = −aφ(Tc − Tm), (5.21)

where aφ is a coefficient measuring the sensor response rate under the indicated
conditions. Using τc as the deviation from nominal in the temperature sensor, (5.20)
and (5.21) can be consolidated in the orthodox manner: The state ordering in what
follows is x = vec(τm, τc).

The coefficients of the local panel models are given as a function of insolation
in [Sch80]. For a single panel and two insolation levels, the coefficients and the
nominal operating points are as displayed in Table 5.3. (The sensor model is not
given in the reference.) The nominal panel temperature at high insolation is 17◦F
higher than that for low insolation: χ = (1017, 1000)⊗1.

The sensors at the site provide two types of measurements:
• a direct measurement of Tc in noise,
• an insolation measurement.

For the purposes of this example, the former will be sampled every 0.5 min in white
Gaussian noise of standard deviation 2◦F:

y[k] = Hχ [k]+ n[k],

where H = e′2 and Rx = 4.
As noted above, the insolation can change suddenly and frequently. Figure 5.9

shows sample functions of {Tm} and {Tc} for the insolation path:φt = e1 I[0,1)∪[6,9)+
e2 I[1,6)∪[9,11). Both temperatures were initialized at 1,017◦. After the cloud comes
over the heliostats at t = 1, Tm moves rapidly toward 1,000◦F with Tc moving at
a much slower rate. A 6◦ temperature difference between the sensor and the panel
develops in 5 min. When the sun returns, the sensor output has significant lag.

In the hybrid model, the modal-state is an indicator of the set point, and the
base-state is derived from a linearization about this nominal point. A change in {φt}
is associated with both a change in local dynamics and a discontinuity in the base-
state (though not in the plant state). Further, {y[k]} is an explicit function of {χt} not
{xt}. In Figure 5.9, the mode-dependent behavior is evident. But an estimator that
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Figure 5.9. Measurements of panel temperature along with the actual temperatures.

depends only on {y[k]}would have a difficult time distinguishing the current mode.
The temperature measurements are marked on the figure with an x. Determining
{Tm} from such an abbreviated data set is a difficult task indeed.

Using data from the site, the modal dynamics can be particularized. A simple
Markov model matching the sample means of the insolation sojourns during a
period of partial clouds is

Q =
[
−0.25 0.25
0.50 −0.50

]

(mean-sojourn in sun is 4 min, while it is 2 min in cloud).
To improve performance, the insolation sensor gives a direct measurement of

{φt}. In the application, the insolation is not uniformly distributed across the panel:
The geometry of the sun–mirror panel is such that the distribution of the solar flux
across a panel is irregular with possible hot spots. Insolation sensors only measure
conditions in a local neighborhood, and to determine the effective insolation across
the panel, several were arrayed across the panel. The highest reading from the group
was used as a measure of panel insolation. This inclination toward high insolation
readings can be accommodated with an asymmetrical P. It will be assumed that the
insolation sensor is sampled every 0.1 min.

Suppose we wish to design a remote estimator of panel temperature. In what
follows, three algorithms will be contrasted. The first, PME(IG) uses the most dis-
criminating modal measurement suite. The discernibility matrix for the insolation



5.7 Estimating the Temperature of a Solar Panel 139

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TIME (MIN)

P
R

O
B

.O
F

 S
U

N

Figure 5.10. The probability of sun using PME(IG).

sensor is

P1 =
[
−0.85 0.20
0.15 −0.80

]
.

This sensor distinguishes conditions quite well but has a bias toward high insolation.
Figure 5.10 shows a plot of {φ1} (sojourns in the sun), the modal measurements,
and { φ̂1} as computed by PME(IG). The good quality of the data is reflected in a
expeditious response to modal transitions (∼1 min) and a generally high confidence
in the modal identification.

The second estimator, PME(IP) uses a less accurate insolation sensor:

P2 =
[
−0.65 0.40
0.35 −0.60

]
.

Again there is a bias toward high insolation, but the precision of the classifier is
such that the modal-state cannot be identified with confidence.

The third estimator, labeled EKF, uses the conventional Kalman algorithm with
pseudonoise. Suppose that Q is a symmetric chain with mean sojourns of 2 min. The
stationary distribution of the chain is φ̂t = 0.51. To account for the discontinuity
in the base-state, the plant noise in the EKF is increased by

χV (e1)χ
′ = d〈x ,x〉t/dt.

In the EKF there are no modal measurements and the cross moments in Pχχ are
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Figure 5.11. Temperature estimates from PME(IG), PME(IP), and EKF.

neglected:

d

dt
x̂ t = Ât x̂ t

and

d

dt
Pxx = ÂPxx + Pxx Â′ + R̂χ + χV (e1)χ

′

subject to appropriate initial conditions and update equations.
Figure 5.11 shows the response of PME(IG), PME(IP), and EKF in this appli-

cation. The PMEs initialize themselves in the first minute. During the first cloudy
period, both of the PMEs follow the metal temperature, but PME(IG) is far quicker.
PME(IP) mistakes the modal condition at ∼5 min, and this leads to a premature
increase in the temperature estimate. Still, given the inability ofPME(IP) to resolve
the modal condition, this response is surprisingly good.
EKF uses the average dynamics for extrapolation and bases its innovations esti-

mate on the average panel temperature. It is both slow to respond to modal changes
and languid in its reaction. The temperature variation in Tm is 16◦F; for PME(IG)

it is 16◦F; for PME(IP) it is 9◦F; for EKF it is only 3◦F.
The three estimators studied in the example all compute estimates of their own

uncertainty. Uncertainty can be expressed in different ways: One of them is the
computed standard deviation of the error in the panel temperature base-state, {x1}.
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Figure 5.12. Computed standard errors for PME(IG), PME(IP), and EKF.

Figure 5.12 shows a plot of
√

Pxx(1, 1) = σT . The behavior of {σT ; EKF} is what
would be expected. From the initial value of 20◦F it drops to about 5◦F, increasing
between temperature measurements. Although the temperature sensor noise is only
2◦F, {σT ; EKF} is larger because the measurement is indirect. Note that the actual
temperature deviation can be closer to 6◦F.

The uncertainty in the two PMEs is mode dependent. The computed {σT ;
PME(IP)} tends to be about 6◦F, a conservative value. During a brief period dur-
ing which PME(IP) becomes confident of its modal identification (at ∼ 7 min),
{σT ; PME(IP)} drops to a value of 4◦F. In PME(IG) the mode dependence is
clearest because modal identification is more accurate. The standard error, {σT ;
PME(IG)}, is seen to move from about 2◦F to about 8◦F whenever an unexpected
modal observation is received. This is to be expected since an observation suggesting
a modal change causes the PME to suspect there might be a larger base-state error.



6
Mode-Dependent Observations

6.1 Problem Definition

Zygostate estimation is not an easy task even when the plant state sensor is modeled
as in (1.17):

plant state measurement: time-discrete

y[k] = Hχ [k]+ n[k]. (1.17)

In some applications, the problem is more perverse because the coefficients of
the plant state sensor depend on the modal-state. Regime dependence may occur
because the linearization is different for different operating points or because the
intensity of the sensor noise is thus dependent. This latter circumstance occurs,
for example, when the plant output is intentionally jammed. In this chapter, we
will explore the utility of the PME in this application. To keep the presentation as
concise as possible, the focus will be on linear jump systems (LJS) (χ = 0) without
endogenous actuation.

We begin with a more flexible plant state observation model:

plant state measurement: time-discrete; variable quality

y[k] =
∑

i

(Hi x[k]+ Di n[k])φi , (6.1)

where {n[k]} is a white Gaussian sequence and the covariance of Di n[k] is Rx(i).
Though the measurement model is similar in form and motivation to (1.17), the
zygostate estimation problem is now complicated by the fact that we are not as sure
of what we are measuring.

142
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In (6.1) both the gain and the noise intensity are random processes. The mea-
surement gain, H , has considerable impact on the base-state update in the Kalman
filter. The measurement residual (the innovations increment) at time t = (k + 1)T
is r [k + 1] = y[k + 1]− ŷ[k + 1]−. The Kalman update is

�x̂[k + 1] = γxr [k + 1], (6.2)

�Pxx [k + 1] = −γx Ryy[k + 1]γ ′x , (6.3)

where the covariance of the residual is Ryy[k + 1] = H Pxx [k + 1]−H ′ + Rx and
γx = Pxx [k + 1]−H ′Dyy[k + 1]. It is evident that mistaking the value of H causes
the filter to assign the correction preferentially in the wrong direction.

The influence of a mistake in assigning an intensity to the sensor noise is more
subtle. A good estimator attempts to smooth the white observation noise by aver-
aging. As Rx increases, the filter gain increases the interval over which averaging
takes place. But what should be done when the intensity of the observation noise
is not known? If the noise is larger than it is thought to be, the Kalman gain will
be too high and the filter will not smooth the noise. However, if the model noise
is larger than the actual noise, not all of the information in the observation will be
used to make the correction.

In this chapter, we will utilize the PME to create a finite-dimensional algorithm
for integrating these modified plant state observations with the conventional modal-
state observations. This requires a generalization of thePME as carried out by Boyd
in [Boy96]. The same group of canonical moments required in earlier applications
reappears. The explicit change in the algorithm appears in the update equation that
accommodates a plant state measurement. The PME is recursive, and the influence
of the new {y[k]} update propagates through the estimation process.

6.2 The PME

The PME fuses the two innovation processes into the required zygostate estimate.
The plant state observation model given in (6.1) modifies the calculation of the
base-state innovations process. The observation residual, r [k+1], is the difference
between the observation and its expectation:

r [k + 1] = y[k + 1]− ŷ[k + 1]−.

In previous chapters, the plant state residual was written

r [k + 1] = y[k + 1]− H x̂[k + 1]−.

This form will not suffice for this analysis. Instead we must use

r [k + 1] = y[k + 1]−
∑

i

Hi R−xφi
. (6.4)
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The residual process is white Gaussian with positive covariance Ryy = D−1
yy :

Ryy =
∑

i

Hi
(
R−xxφi

− R−xφi
R−φi x

)
H ′

i + Rx(i)φ̂
−
i . (6.5)

Define a gain function γx by

γx =
∑

i

P−x(xφi )
H ′

i Dyy . (6.6)

In these terms, the PME is written:

the PME: mode dependence in the plant state sensor

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

Ai Rxφi ,

d

dt
Pxφ =

∑
i

Ai P(xφi )φ + Pxφ Q,

d

dt
Pxx =

∑
i

(
Ai P(xφi )x + (·)′ + Rχ(i)φ̂i

)
,

d

dt
Pxxφm =

∑
i

(
Ai P(xφi )xφm + (·)′ + Pxxφi Qim Rχ(i)Pφiφm

)
.

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ = −�x̂�φ̂
′ +
∑

k

Pxφφk�ϑk,

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x

−P+xφm
�x̂ ′ +

∑
k

Pxxφmφk�ϑk .
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At a base-state observation:

�x̂ = γx�νx ,

�Pxφ = −γx

∑
i

Hi Pxφi (ei − φ̂)′,

�Pxx = γx Ryyγ
′
x − γx

∑
i

Hi
(

Pxxφi + φ̂i Pxx
)− (·)′,

�Pxxφm = −γx

∑
i

Hi
(

Pxxφiφm + φ̂i Pxxφm

)+ (·)′.

Where comparable, the PME mimics the Kalman update with the substitutions∑
i

H x̂φi �→
∑

i

Hi R−xφi
,

P−xx H ′Dyy �→
∑

i

P−x(xφi )
H ′

i Dyy,

H P−xx H ′ + Rx �→
∑

i

Hi
(
R−xxφi

− R−xφi
R−φi x

)
H ′

i + Rx(i)φ̂
−
i .

The first of these replacements is reasonable: If {φt} is not known, xφi is replaced
by its expectation. The second is harder to devine but plausible. The equation for
the covariance of the measurement residual is the result of a direct calculation.

The choice of γx is surprising in one respect. The covariance of the measurement
residual, Ryy , is an aggregation over the modal-state space. The factor

∑
i P−x(xφi )

Hi

is another aggregate over the same space. Intuition would suggest

γx =
∑

i

P−x(xφi )
H ′

i

(
Hi
(
R−xxφi

− R−xφi
R−φi x

)
H ′

i + Rx(i)φ̂
−
i

)−1
,

but this composition is not correct; the aggregations take place separately.

6.3 Modal Estimation Using the PME

The effectiveness of thePMEdepends upon its ability to fuse disparate measurement
sequences to create a zygostate estimate. Even when there is considerable error in
{φ̂t}, the error cross moments are used to improve {x̂t}. The changes in the PME

created by (6.1) are made explicit in the {y[k]} update, but they are already latent in
the {zt}update. And it is from {Zt} that the mode is identified. To illustrate this aspect
of the the estimation problem, let us focus on the modal subfilter. Suppose an imager
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Table 6.1. Imager error parameters.

Mode UDE NNE PE

e1 0.1 0.1 0.2
e2 0.9 0.0 0.0

is used in a tracker following a maneuvering target in the plane. The imager places
the orientation of the target in bins of width 30◦ at a rate of 10 frames/s (λ = 10).
The target has the three turning modes encountered in earlier applications:

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.

The imager quality is satisfactory during normal operation, but the target uses
countermeasures from time to time. During intervals of jamming, the image is so
degraded that it can easily be placed in any of the angular bins. Let {rt} be an
indicator of the countermeasure mode: rt = e1 if jamming is off; rt = e2 if jamming
is on. The error parameters of the imager are given in Table 6.1.

Even in normal operation, this imager is not as good as imager IG in Table
4.1. It makes the correct classification only 60% of the time. During intervals
when the countermeasures are active, the imager appears to be essentially useless;
classification errors occur 90% of the time. Figure 6.1 shows a sample of the output
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Figure 6.1. Imager observations during periods of jamming.
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of the imager for a simple turn. The target is coasting on the interval t ∈ [0, 10)
and is located in bin 1; ρt = e1. At t = 10 s it begins to turn, but it does not cross
the nearest angular bin boundary until t = 11 s. It continues to turn until t = 20 s,
at which time ρt = e7.

This angular motion is clearly visible in Figure 6.1. What may not be so clear
is that on the intervals from [5,6) and [15,16), the target jams the imager: rt =
e2; t ∈ [5, 6)∪ [15, 16). Particularly in the latter interval, the presence of jamming
is masked by the chance occurrence of observations in orientation bin e3 and its
contiguous bins. Since such measurements correspond to permissible target mo-
tions, these measurements could be taken to be unjammed indications of the modal
state.

To delineate the PME, the modal dynamics must be specified. The dimension of
φt is 12× 3× 2 = 72. Suppose the mean sojourn times are

• 1.2 s in an angular bin during a turn,
• 10 s in a turn,
• 20 s in a coast,
• 1 s in a jamming mode,
• 10 s in an unjammed mode.

From this, Q can be deduced. The turn rate is actually slower than the PME

expects. This type of model mismatch commonly occurs in applications. Figure 6.2
shows the probability of jamming as computed by the PME . The identification of
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Figure 6.2. Probability of jamming on the sample trajectory.
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Figure 6.3. Probability of turn on the sample trajectory.

the jamming intervals is surprisingly good given the ambiguity of the observation.
Countermeasures are identified expeditiously and with confidence. Artifacts in the
second jamming interval delayed recognition of a return to the normal mode of
observation.

Of course, the intent of the PME is not to identify sensor quality but rather the
target motion. Figure 6.3 shows the probability of the coast mode on the sample
path. Coast is identified quite well on t ∈ [0, 10) despite countermeasures at around
t = 5 s. The possibility of countermeasures causes the PME to lower the credence
given to an individual observation. Nevertheless, the PME is quick to identify the
change in motion mode when the bin boundary is crossed at t = 11 s.

6.4 A Maneuvering Target Employing Countermeasures

Benchmark tracking problems prepared by researchers at the Naval Surface Warfare
Center, Dahlgren Division [BWC94] were used by various investigators to exercise
their algorithms. The results were presented at sessions of the American Control
Conference in 1994 and 1995. In the latter conference, algorithms were rated on
their ability to maintain effective track in the presence of countermeasures. In one
instance, the radar signal was degraded by a standoff jammer broadcasting wideband
noise. The tracker was expected to maintain lock on a maneuvering target even while
the jammer cycled on and off.
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Wideband jamming creates more noise in the plant state measurement. During
intervals of jamming, the filter gain should be reduced to prevent excessive volatility
in the estimates. Unfortunately, an EKF does not know how to weight the observa-
tions because it is not sure of its measurement mode. If the jamming is manifest in
the modal observation, the dual path architecture of the PME can be used to resolve
the modal ambiguity and assist in the base-state estimation.

To elucidate the response of the PME in this environment, return to one of the
problems described in Chapter 4. An antiship missile is launched from an aircraft
at a range of about 80 km and falls to an altitude of 780 m. After engine ignition,
it approaches the ship at a speed of 335 m/s with constant altitude. As the missile
nears the ship it performs a series of evasive 7 g jinks, coasts for 10 seconds, then
makes a final 3 g turn toward the ship. The path and its planar projection are shown
in Figure 6.4. Figure 4.3 shows part of this path after detection.

The planar motion model for the missile is

d


X
Y
Vx

Vy

 =


0 0 1 0
0 0 0 1
0 0 0 −�
0 0 � 0




X
Y
Vx

Vy

 dt +


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
, (6.7)

where {X, Y } are position coordinates, and {Vx , Vy} are associated velocities. The
target is subject to both a wideband omnidirectional acceleration represented by

30
40

50
60

70

-10

0

10

20

0

200

400

600

800

1000

KMKM

M

Figure 6.4. Trajectory of a missile with its shadow in the Z = 0 plane.



150 Mode-Dependent Observations

75 80 85 90 95 100

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
T

U
R

N
 R

A
T

E
 (

R
A

D
/S

)

TIME (S)

Figure 6.5. Turn rate profile for the test trajectory.

the Ft -Brownian motion {wx , wy} and the maneuver acceleration represented by
the turn rate process {�t}.

Figure 6.5 shows the turn rate profile of the benchmark path from the beginning
of the jinking phase to impact. The piecewise constant turn rate model is a good
approximation to target motion, but it does not reproduce the turns exactly.

With the usual modal identification, (6.7) can be written:

dxt =
∑

i

Ai xtαi dt + Cdwt .

A radar provides range and bearing to the missile at a rate of one sample per
second. The jammer is represented by an increased variance for both the range and
the bearing measurements. By suitable linearization, the radar measurement can be
represented

y[k] = H x[k]+
∑

i

Di n[k]φi . (6.8)

The observation gain is determined by the geometry of the encounter (calculated
on the estimated path) and has nothing to do with jamming. Jamming is isolated in
Rx(i). The indicator of the presence of countermeasures is {rt}: rt = e1 if normal
conditions; rt = e2 if there is broadband jamming. The radar error parameters are
given in Table 6.2.

Figure 6.6 shows a portion of the path. The thickened intervals are periods of
jamming. A sample of the radar measurements is shown as well. Jamming produces
anomalous measurements, but they are few in number. From radar alone, it is
difficult to isolate jamming sojourns in a timely manner.
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Table 6.2. Radar errors.

Mode Range Bearing

e1 40 m 0.1◦

e2 400 m 1◦

45 46 47 48 49 50 51 52
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Figure 6.6. Target path with intervals of jamming.

The EKF developed in Chapter 4 can be used in this application too. The wide-
band disturbances on the path are small: W = 1. However, to account for jamming,
pseudonoise should be added. Figure 6.7 shows the error ellipses for EKF(W=25)

on a sample path (not the sample shown in Figure 6.6). It is clear that EKF(W=25)

is confused by the maneuvers, and the jamming compounds the confusion. The
acceleration model predicts an omnidirectional acceleration of constant intensity.
The filter is ill prepared for the turn preceded by jamming. The error ellipses of
EKF(W=25) are larger than those of EKF(W=1), but the target position is rarely
close to the one-σ ellipses.
EKF(W=25) does not expect jammed radar measurements. The large, unmod-

eled error in the measurements shows up in the filter output as big jumps in the esti-
mated position. The filter gain is too low for the turn, but it is too high to effectively
filter the measurement noise. The jumps induce errors in the estimated target ve-
locity as is evident when the estimated position tacks away from the true trajectory.

In contrast to EKF(W=25), the PME acknowledges not only the existence of
target maneuvers, but also the possibility of jamming. The jammed imager will
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Table 6.3. Imager error parameters.

Mode UDE NNE PE

e1 0.05 0.05 0.2
e2 0.8 0.0 0.0

46 47 48 49 50 51
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Figure 6.7. Performance of EKF(W=25) on a path with jamming.

have a large probability of uniformly distributed random error, reducing its overall
effectiveness in identifying a turn. For this trajectory, the jamming intervals are
particularly inopportune: They mask the beginning of a maneuver mode change in
all three cases.

In the PME it is necessary to delineate a modal-state that embraces maneuver
mode, missile orientation, and jamming mode. Partition the turn rates in the usual
way:

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.
The imager quantization is 2π/L . The three modal primitives, αt , ρt , and rt , may
now be combined to give a modal-state: φt = αt ⊗ ρt ⊗ rt .

The modal dynamics follow from the sojourn times in each mode:
• 5 s in a turn,
• 10 s in a coast,
• 3 s in a jamming mode,
• 3 s in an unjammed mode,

and the imager quality is given in Table 6.3.
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The PME is simplified when H is constant. If Hi ≡ H, then∑
i

Hi
(
R−xxφi

− R−xφi
R−φi x

)
H ′

i = H P−xx H ′,

∑
i

P−x(xφi )
Hi Dyy = P−xx H ′Dyy .

Also, Ryy = H P−xx H ′+ R̂−x . As a consequence, the plant state measurement update
is that used in Chapter 4:

At a base-state observation:

�x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γ ′x .

Figure 6.8 shows the tracking performance of the PME. The error ellipses are
larger during intervals of jamming, indicating the filter’s decreased confidence in
its own estimates. At the same time, the filter gain is moderated by its model of
the large observation errors during jamming: The large jumps in estimated target
position evident in Figure 6.7 are avoided. The error ellipses for the PME almost
always enclose the true target position.
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Figure 6.8. Performance of PME on a path with jamming.
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Figure 6.9. Computed probability of jamming and the turn jamming state.

Figure 6.9 shows the computed probability of jamming. Despite its unpropitious
placement, the onset of each interval of countermeasures is recognized within a
second or so. The motion mode is identified almost as well as it was in the absence
of jamming.
EKF(W=25) has difficulty tracking a maneuvering target because the conven-

tional approach to estimation does not induce the filter to change its dynamics with
the maneuver and the measurement mode. In contrast, thePME accommodates both
random target turns and the intervals of degraded target measurements. The image
observations allow both the target maneuver mode and the radar jamming mode to
be identified and used in location tracking. The improvement in performance using
the dual-sensor architecture is dramatic.



7
Control of Hybrid Systems

7.1 Feedback Regulation of Hybrid Systems

In the applications of hybrid estimation we have explored thus far, we have ignored
the influence of the endogenous actuating signal. For example, although a hostile
aircraft is controlled, the control action is not generated at the tracker. In other
applications that involve an endogenous control, the effect of the actuating signal
on estimation is passive. A prototype of this passivity is the Kalman filter for an
LJS. The base-state dynamics are given in Chapter 1 (1.8):

dxt =
∑

i

((Ai xt + Bi ut) dt + Ci dwt)φi . (7.1)

The presence of a control signal results in a simple modification of the Gφ
t -

conditional mean of the state. The actuating signal appears only in the extrapolation
equation for {x̂t} in the form of a term

∑
i Bi utφi . The base-state error covariance

is independent of {ut}: The control has no impact on the quality of the estimate.
The independence of {Pxx} and {ut} has important implications for the design

of a feedback control algorithm. To illustrate, let us review some results on the
regulation of an LJS on the time interval t ∈ [0,T]:

Kalman filter: time-continuous state, time-discrete measurements,
endogenous actuating signal

Between observations:
d

dt
x̂t =

∑
i

(Ai x̂t + Bi ut)φi , (7.2)

d

dt
Pxx =

∑
i

(Ai Pxx + Pxx A′i + Rχ(i))φi . (7.3)

155
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At an observation:

�x̂[k + 1]= γxr [k + 1], (7.4)

�Pxx [k + 1]=−γx Ryy[k + 1]γ ′x . (7.5)

In an LJS, the set points are zero: χ and υ are both zero matrices, and the base-state
is continuous at modal changes.

The process {ut} is necessarily adapted to the filtration generated by the measure-
ments. Different measurement architectures lead therefore to different controllers.
Recall that F is the underlying σ -algebra on (�,P) with respect to which all of
the relevant plant processes are defined. There are several subfiltrations that appear
in applications:

• {Ft} is generated by {xt , φt , yt , zt}: complete knowledge of all plant pro-
cesses up to the present.

• {Gt} is generated by {yt , zt}: complete knowledge of all plant outputs up to
the present.

• {Gφ
t } is generated by {yt , φt}: complete knowledge of all base-state obser-

vations and the modal path up to the present.
• {GφT

t } is generated by {yt} and {φτ ; τ ∈ [0,T]}: complete knowledge of the
base-state observations up to the present and the complete (past and future)
modal path.

• {X φ
t } is generated by {xt , φt}: complete knowledge of the zygostate path

up to the present.
• {X φT

t } is generated by {xt} and {φτ ; τ ∈ [0,T]}: complete knowledge of
the base-state path up to the present and the complete modal path.

• {X z
t } is generated by {xt , zt}: complete knowledge of the base-state and

modal observation up to the present.
The regulation problem can be posed within each of these filtrations. For example,

the filtration {GφT
t } differs from {Gφ

t } insofar as the former knows the future modal
path while the latter can only speculate. In the Kalman filter, the future modal
path is superfluous. Equations (7.2)–(7.5) are properly called the Gφ

t -Kalman filter
(or equivalently the GφT

t -Kalman filter). The development of the PME permits no
measurements of the modal future though they would be useful if available. In
regulation, the modal future is of considerable utility.

To illustrate the analytical design of a feedback controller for a hybrid system,
consider first the case where the plant is noise free: {Rχ(i) = 0; i ∈ S}. Let us find
that X φT

t -adapted actuating signal that minimizes the quadratic performance index

J (u) =
∫

[0,T]
(x ′t Rxt + u′t Sut) dt, (7.6)

where R ≥ 0 and S > 0 are symmetric matrices.
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The solution to this optimization problem is well known [AM90, Chapter 2].
The X φT

t -quadratic regulator (called the LQ-regulator) is given by the following
construction:

ut = −
∑

i

S−1 B ′i Lt xtφi , (7.7)

where {Lt} satisfies

d

dt
Lt = (−A′i Lt − Lt Ai + Lt Bi S−1 B ′i Lt − R)e′iφt (7.8)

with LT = 0. Note that Lt depends on the modal path, that is, the sequence of
modes taken by the plant on the time interval of interest.

Some properties of the LQ-regulator are evident:
• ut is linear in the base-state;
• the control gain depends on the current control matrix,

∑
i Biφi ;

• the control gain depends on the future values of the modal process through
{Lt}.

The properties of the X φT
t -regulator are much studied, and this feedback controller

has been proposed for many applications. If the Rχ(i); i ∈ S are not zero, J (u)
is random. In this case, E[J (u)] is often used as a performance index. The X φT

t -
regulator is optimal even in this case.

To make the problem somewhat more realistic, remove the perfect measurement
of the base-state. Suppose, instead of {xt}, only {yt} is available. The performance
index remains the expectation of the quadratic functional:

J (u) = E

[∫
[0,T]

(x ′t Rxt + u′t Sut) dt

]
. (7.9)

The GφT
t -quadratic regulator is that which minimizes J (u). This problem has a sur-

prisingly simple solution. The GφT
t -quadratic regulator is given by [AM90, Section

8.2]:

ut = −
∑

i

S−1 B ′i Lt x̂tφi , (7.10)

where {Lt} is given in (7.8).
The GφT

t -quadratic regulator is composed of
• the mean of the base state generated by the Gφ

t -Kalman filter,
• the gain of the X φT

t -quadratic regulator.

This is to say that if xt is replaced in the X φT
t -regulator by its Gφ

t -mean, the GφT
t -

regulator results. The GφT
t -quadratic regulator is an instance of the certainty equi-

valence principle: An unknown quantity (xt ) can be replaced by its mean (x̂t )
in an algorithm derived on the basis of flawless knowledge of the quantity. It is
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also an instance of the separation principle: State estimation can be disengaged
from regulator design with each algorithm derived independently and the results
conjoined.

To increase the realism of the model on another level, let us take from the regulator
its knowledge of the modal future and pose the problem in {X φ

t }. Estimation is of
no consequence since the zygostate is known, but the future is murky. Again use
the performance index J (u):

J (u) = E

[ ∫
[0,T]

(x ′t Rxt + u′t Sut) dt

]
.

Even with flawless measurements, certain problems immediately present them-
selves. The X φT

t -quadratic regulator cannot be implemented because the required
gain is explicitly dependent on the modal future. Analysis of this problem leads to
the X φ

t -quadratic regulator [Swo69a]:

ut = −
∑

i

S−1 B ′i Li xtφi , (7.11)

where the {Li ; i ∈ S} satisfy

d

dt
Li = −A′i Li − Li Ai + Li Bi S−1 B ′i Li − R −

∑
j

Qi j L j (7.12)

with Li (T) = 0; i ∈ S. Comparing (7.7) with (7.11), it is evident that the X φT
t -

quadratic regulator shares many similarities with the X φ
t - quadratic regulator. Both

are linear in x ′t with a gain that is influenced by the modal-state. They differ, however,
in the calculation of the {Lt} factor. The former can use its knowledge of the modal
future to prepare itself for the modal changes it knows will occur. The latter has
only a stochastic model with which to predict the future.

The issues of stability of the closed-loop X φ
t -system are more subtle than those

encountered in the X φT
t -system. The closed-loop X φT

t -quadratic optimal system is
linear with time variable coefficients and the notions of stability are applied in the
usual way. The closed-loop X φ

t -quadratic optimal system is different insofar as the
modal path is not predetermined. In fact, the closed-loop system can be unstable in
certain regimes (have closed-loop poles of the regime-specific system in the right
half plane) even though the overall system is quadratic optimal [Swo69b]. Issues
of stability are discussed in much more detail in [FLJC92], [FLF95], and [Mar90]
for X φ

t -closed-loop systems.
We have employed a quadratic performance index to construct the feedback regu-

lator. In the X φ
t -case, this leads to control gains that are indexed by the operating

mode. This form of feedback has been used in applications without carrying along
the associated optimization. Equation (7.11) is an example of gain scheduling in
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which “linear design methods are applied to the linearized model at each operating
point in order to arrive at a set of feedback control laws that perform satisfactorily
when the system is operated near the respective operating points”[Rug91]. This
more myopic view of regulation localizes the control design problem to the cur-
rent regime and seeks an acceptable regime-specific controller for that operating
condition.

When the sample paths of {φt} are not constant, the adequacy of a controller using
gain scheduling is more difficult to determine. For example, if {Ai , Bi ; i ∈ S} is
a family of controllable models, there is a set of feedback regulators with gains
{Ki ; i ∈ S} such that the regime-specific closed-loop poles are well located no
matter the regime:

ut = −
∑

i

Ki xtφi . (7.13)

Indeed, we could select the {Ki } such that the closed-loop poles did not change on
the modal path: When {φt} makes the transition ei �→ e j , Ki �→ K j so as to keep
the poles of A j − B j K j in the same place as those of Ai − Bi Ki . This particular
X φ

t -regulator may not make the transfer function invariant on the path, but this
choice of pole locations avoids the concerns engendered by the local instabilities
that may arise using the X φ

t -quadratic regulator.
The Gφ

t -quadratic regulator of the LJS system also satisfies the certainty equi-
valence principle [SA77]. When there are base-state discontinuities at modal transi-
tions, the Gφ

t -quadratic regulator takes the form of a linear controller with a bias
[Swo82], [DE98]:

ut = −
∑

i

(Ki x̂t + Mi )φi .

The bias,
∑

i Miφi , situates the base-state at a point favorable to the anticipated
discontinuity.

When the modal-state measurements are noisy the problem is considerably more
complex even when the base-state is measured perfectly. Suppose {xt} is measured
but the modal state is inferred from {zt}:

dzt = h′φt dt + dηt , (7.14)

where {ηt} is a Brownian motion. Since only the modal-state is uncertain, it can be
inferred using (2.22). We can adapt the gain scheduling approach presented earlier
to create an X z

t -regulator: Replace the gain
∑

i Kiφi with its mean K̂ t :

ut = −
∑

i

Ki φ̂i xt . (7.15)

The advantage of (7.15) is that only {φ̂t} need be computed on-line.
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The X z
t -quadratic control problem has been often investigated and has proven

to be intractable. One approach that has achieved some success is useful when
the modal measurement is accurate (i.e., φ̂t ≈ φt ) except for short delays after a
modal transition. Let {φa

t } be a process on the modal-state space such that E[(φa
t −

φt)
′(φa

t − φt) |Gt ] is small. For example, φa
t could be the most likely mode. Then

{φa
t } could replace {φt} in the X φT

t -regulator, (7.11). Or better, the regulator could
be modified to account for the delay in identifying the modal transitions (see [SC86]
and [DE98]).

One attempt to find the solution to the more general problem is described in
[LKM85]: The finite-state modal process is replaced with a diffusion and {zt} is
as given in (7.14). Even if the number of relevant Zt -moments of φt is truncated
arbitrarily, the design problem is not tractable. A representation for theX z

t -quadratic
control was proposed in the reference:

ut = −
∑

i

S−1 B̂ ′Lt xt . (7.16)

Unfortunately, the moments upon which {Lt} depends cannot be generated without
considerably simplifying the problem (e.g., using an EKF to compute them).

The problems encountered in [LKM85] are compounded if {xt} is not observed.
One cause of these difficulties is that the actuating signal may now be used to
influence the ability of the regulator to determine the regime itself: The actuating
signal can be used to probe the plant and enhance modal estimation. At a fun-
damental level, the quadratic regulator has twin roles: It regulates the base-state
and it reduces the zygostate uncertainty. When this twofold task is acknowledged,
controller design is called a problem in dual control [Swo66a, Swo66b].

In the above implementations, the controller is passive with respect to estima-
tion, and the dual nature of the problem is either moot (e.g., because the modal-
state is measured) or ignored. Since the influence of the actuating signal estima-
tion on estimation accuracy is minimal, the focus can be placed on regulation.
The Gt -quadratic optimal control problems are commonly formulated in such a
way that the conditional mean estimate of the base-state (called the information
state) plays the role of the base-state in the Ft -optimization problem. The index
J (u) is related to the quality of the base-state estimate plus a quadratic form in
the information state and control. Since the latter is independent of the control
algorithm, the optimization problem becomes an orthodox LQ-problem in the in-
formation state.

We will not address the dual nature of the Gt -feedback regulator in this chapter
except perhaps peripherally. A good illustration of the issues arising in nondual
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hybrid control appears in [EB96]. First note that a perfunctory generalization of
the Ft -quadratic regulator to a system with noisy zygostate measurements would
be

ut = −
∑

i

Ki φ̂i x̂t .

It is shown in [EB96], however, that at least for the Yt -quadratic-optimal problem,
the controller has a form somewhat different. The Yt -quadratic regulator problem
is intractable, but by ignoring the probing aspects (seeking what is called the open-
loop-optimal-feedback (OLOF) control), it is shown that an attractive feedback
regulator can be written

ut = −
∑

i

Ki (Yt)Rxφi . (7.17)

The gain factor, Ki (Yt), is quite complicated and involves moments of {φt}.
The second factor in (7.17) is perhaps of more interest to us. It is one of the

canonical moments that is computed as part of the PME. This suggests that the
geometry of the zygostate is useful even for nonprobing control. Although com-
puting φ̂t and x̂t is difficult using conventional algorithms, finding a reasonable
approximation to Rxφ is even more so.

In this chapter we will use the PME to illuminate some of the issues that arise
in the regulation of hybrid systems. This will be done with controls of a restricted
sort and only for LJS. The construction of the PME is such that full probing is not
achieved in the feedback system. It will be seen, however, that the second mixed
cross-zygostate moment is important for effective control.

7.2 The PME

Let us consider the regulation of an LJS with time-discrete base-state measurements
and classificational measurements of the modal-state:

dzt = λPφt dt + dηt . (7.18)

Unless the delays are short (e.g., {φt} is measured in small white noise in [DBE96]),
the estimation problem is difficult. Finite-dimensional approximations to the condi-
tional probabilities are proposed and exploited in [LBV91].
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The PME for a linear jump system is:

the PME: LJS with control

Between observations:
d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

(
Ai Rxφi + Bi uφ̂i

)
,

d

dt
Pxφ =

∑
i

(
Ai P(xφi )φ + Bi u Pφiφ

)+ Pxφ Q,

d

dt
Pxx =

∑
i

((
Ai P(xφi )x + Bi u Pφi x

)+ (·)′ + Rχ(i)φ̂i
)
,

d

dt
Pxxφm =

∑
i

((
Ai P(xφi )xφm + Bi u Pφi xφm

)+ (·)′ + Pxxφi Qim
)
.

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ = −�x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x − P+xφm
�x̂ ′

+
∑

k

Pxxφmφk�ϑk .

At a base-state observation:

�x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γx .

Its development is presented in Appendix 1.
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This PME, which we denote by PME(B), is similar to the Kalman filter. The
term

∑
i (Ai x̂t + Bi ut)φi in the Kalman filter is replaced by

∑
i (Ai Rxφi + Bi ut φ̂i ),

a not surprising change given that φt is not now known and is correlated with xt . If
all of the Bi were equal to the constant B we would have∑

i

(
Ai Rxφi + Bi ut φ̂i

) =∑
i

Ai Rxφi + But .

The contribution of the actuating signal is added to the uncontrolled drift of {x̂t}.
The calculation of {Pxx} in PME(B) is similar to that performed in the Kalman

filter (e.g., the term of
∑

i Ai Pxxφi in the Kalman filter is replaced by the mo-
ment

∑
i Ai P(xφi )x ). This change in the PME accounts for the correlation of the

modal×base-state error and is avoided in the Kalman filter because of the assumed
perfect measurement of {φt}. More peculiar is the fact that {Pxx} (and hence the gain
in PME(B)) depends upon {ut}. The inclusion of a control extends the equation for
the base-state error covariance with the terms

d

dt
Pxx = · +

∑
i

(
Bi ut Pφi x + Pxφi u

′
t B ′i
)
.

In contrast with the Kalman filter, PME(B) can exert influence over its own
uncertainty. But this influence is limited. If Bi is a constant,

∑
i Bi Pφi x = 0: If the

control matrix is independent of mode, the control has no influence on the base-state
error covariance. Further, the control-dependent terms in {Pxx} are effective only to
the degree that the cross-error moment Pxφ is large: When the regime is identified
with confidence, the control has little influence on {Pxx}. Consequently, a regulator
based upon the PME cannot be said to be a dual controller. Any heightening of the
probing function is secondary to its role as a base-state regulator.

The influence of {ut} on the other canonical moments is similar:

d

dt
Pxφ = · +

∑
i

Bi ut Pφiφ,

d

dt
P xxφm = · +

∑
i

(
Bi ut Pφi xφm + Pxφiφm u′t B ′i

)
.

Again, if the Bi (i ∈ S) are constant,∑
i

Bi ut Pφiφ = 0

and ∑
i

Bi ut Pφi xφm = 0.
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Also, if the regime is known with confidence, Pxφiφm ≈ 0 and Pφiφ ≈ 0. So the
influence of control on the higher moments is significant only during the intramodal
transients and only when the regime-specific control matrices are different.

The weak dependence of the higher moments on {ut} suggests a way to simplify
the PME. Let PME(B̂) use the LJS algorithm presented in Section 4.4 with the
addition of B̂t ut to the extrapolation equation of {x̂t}. Ignore {ut} in the other
moment equations. This is an algorithm that retains the geometry of the motion
without the complication of the actuating signal in moments where {ut} seems
to have less influence. As the estimator’s confidence in its estimate improves, the
influence of the actuating signal wanes anyway: As φ̂t ≈ ei , the PME(B) becomes
identical to the PME(B̂). In the next section, we will look at an example that
contrasts these algorithms.

7.3 An RPV Subject to Subsystem Failure

To illustrate the usefulness of the PME in a feedback control context, consider
an elementary scenario. A remotely piloted vehicle (RPV) is detected at a range
of approximately 2.5 km. It is desired that the RPV be directed to its station
(located at coordinates (0,0,0)). It is first returned to a neighborhood of the sta-
tion at a constant altitude (the capture region) with handover to a landing controller
in the terminal phase. During the constant-altitude portion of this operation, the
RPV will be thought of as moving in the X–Y plane (X and Y are location coordi-
nates referenced to the station) with elementary and uncoupled motion dynamics:
d2

dt2 X = bx ux + noise, and similarly for Y ; bx = 1 is the actuator gain in the X
direction (respectively by = 1 is the actuator gain in the Y direction), and {ux} is
the actuating signal in the X direction (respectively {uy} in the Y direction). The
noise is unit Gaussian white noise and is independent in direction. This nominal
mode of operation will be labeled φt = e1.

Without compensation, the X–Y -dynamics are unattractive: four open-loop poles
at the origin. The usual state space description of the system would be four dimen-
sional: xt = vec[X, Y, Vx , Vy], where Vx is the X component of the velocity, and
similarly for Vy . The base-state model of the RPV is controllable using these coor-
dinates, and it is easily seen that the four closed-loop poles can be placed arbitrarily
with linear state feedback. Specifically, if ut = −K1xt the closed-loop poles can
be placed on a circle with ωn = 0.2 and with damping ratios ξ = 0.5 and 0.75:

K1 =
[

0.04 0.20 0 0
0 0 0.04 0.30

]
.

As introductory textbooks often point out, linear feedback can be used to convert
an unstable system to one that has satisfactory performance.
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Figure 7.1. The nominal path of the RPV and the effect of a failure at t = 4 s.

Unfortunately, this RPV is subject to two kinds of subsystem failure. The first
(labeled φt = e2) causes the RPV to turn at a rate of 0.2 rad/s (about 6 g at the
speed of the RPV), and it simultaneously reduces the gain of the X-actuator by a
factor of ten (bx = 0.1). The second (labeled φt = e3) causes the RPV to turn in
the opposite direction at the same rate, and it reduces the gain of the Y-actuator by
a factor of ten (by = 0.1).

Figure 7.1 shows the effect of the subsystem failure on the performance of the
nominal regulator, ut = −K1xt . From detection at (X, Y )= (2, 1) km and velocity
(Vx , Vy) = (−100, 200) m/s, the regulator corrects the initial velocity and brings
the RPV toward the station. The solid curve shows the response of the RPV in
the nominal mode: φt ≡ e1. As the RPV approaches the station, it overshoots –
primarily in X . This is corrected and the RPV nears the capture region. The path
shown is for the first 80 s after detection.

Suppose there is a subsystem failure: φt �→ e2 at t = 4 s. The X -gain is suddenly
reduced and the vehicle begins to turn; the RPV begins to head south. The failure
causes the pirouette shown in Figure 7.1. The controller corrects this error and moves
toward the station, but the RPV enters the capture region with a disadvantageous
state; the west velocity is far too high. Again only 80 s of the path is shown.

It is easily determined that the closed-loop system in the degraded mode is
still stable using the gain K1, but the closed-loop poles in the e2 regime move to
ωn = 0.28, ξ = 0.53 and ωn = 0.044, ξ = 0.19. The former pair are well damped
and fast. It is the latter pair that gives the motion its peculiar character. They are
less well damped and their natural frequency has been reduced by a factor of five.
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Figure 7.2. A sample path of the controlled RPV using EKF(W=1).

Figure 7.1 shows the motion with perfect and continuous location and velocity
sensors. Suppose, however, that the location of the RPV is actually measured in
range and bearing with a radar located at the station. The radar has a sample rate
of 1 dwell/s, a standard deviation in the (X, Y )-range measurement of 40 m, and
a standard deviation in (X, Y )-bearing of 50 mr (50 m at a range of 1 km). An
EKF (labeled EKF(W=1)) for the nominal system can be constructed that will
generate estimates of the motion state. The estimates generated by the EKF will
certainly be good before a failure since the motion has a LGM representation. It is
plausible to assume that after the initial transient, x̂t ≈ x ′t because the radar noise
is small. However, a one-second update is significant in this application because
of the smoothing in the EKF. Figure 7.2 shows a sample path of the first 20 s of
RPV motion using the nominal control: u′t = −K1 x̂t . This figure has a feather plot
with position shown every 0.2 s. The radar measurements (marked with an “x”) are
shown as well.

Before the subsystem failure, the certainty-equivalent regulator performs well
(compare with Figure 7.1). After the failure, the closed-loop response begins to
deteriorate. The flight path has a pirouette like that seen in Figure 7.1, but the
size of the loop is now larger. It is interesting to note that EKF(W=1) exhibits
the phenomenon of excess error even in the regulation context: The error in the
location exceeds the error in the radar fixes. This is common in EKFs when used
in a multimode environment; the estimate is worse than the data. The closed-loop
system is still stable, but the lags and the misinterpretation of the data are such that
the EKF-based regulator is unacceptable.
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To improve performance suppose there is a sensor onboard the RPV that measures
the operating mode and transmits this information to the controller ten times a
second. The accuracy of this sensor is not good. The modal sensor gives a correct
classification of the motion mode only 60% of the time:

P(�zt = ei |φt = ei ) = 0.6,

with the errors uniform in the remaining bins. From this the discernibility matrix,
P, can be constructed. The dynamics of the modal process are delineated by the
elements of the Q matrix. Suppose the chain is symmetric about φt = e1 with mean
time to failure of 4 s. Repair is not possible: The mean time to repair is selected to
be 30 s and this is longer than the simulation interval.

The base-state dynamics are

d


X
Y
Vx

Vy

 =


0 0 1 0
0 0 0 1
0 0 0 −�
0 0 � 0




X
Y
Vx

Vy

 dt +


0 0
0 0
bx 0
0 by

 ut dt

+


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
.

In normal operation (�t ≡ 0), there are two accelerations:
• an endogenous acceleration {u′t} weighted by the matrix e2 ⊗ Bi ,
• a wideband, omnidirectional, exogenous acceleration represented by {wt}.

The subsystem failure manifests itself in an abrupt change in the system gains
and a turning motion. Specifically, if a failure of type one occurs (φt = e2), the
gain in the X direction decreases (B2 = diag(0.1, 1)), and the aircraft starts to turn
(�t = 0.2 r/s). Alternatively, if failure of type two occurs (φt = e3), the gain in
the Y direction decreases (B3 = diag(1, 0.1)), and the platform starts to turn in the
other direction (�t = −0.2 r/s). The static stability of the matrices A2 and A3 show
little improvement over A1. In open loop, each failure mode has a pair of poles at
the origin and a complex conjugate pair on the imaginary axis. After a failure, the
X–Y dynamics cannot be separated because the turn introduces coupling in the X
and the Y directions.

We have reviewed several algorithms in which the Ft -regulator takes the form

ut = −
∑

i

Kiφi xt . (7.19)
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The gains {Ki ; i ∈ S} may be given by the solution of a set of ordinary differential
equations. Or perhaps “the controller parameters are calculated at a number of
operating conditions using some suitable design method. The controller is thus
tuned or calibrated for each operating condition” [AW95, Chapter 11]. This latter
method of selection may involve robustness [BB96, Shi96] or stability [FLC96]. In
any event, such a regulator presupposes that the zygostate can be measured without
error.

In this problem, we will restrict attention to a variant on (7.17),

ut = −
∑

i

Ki Rxφi . (7.20)

The {Ki } can be selected to suit the application. Since the RPV is controllable
in every regime, there exists a set of feedback gains {Ki ; i ∈ S} such that Ai =
Ai − Bi Ki has the same poles for all i . In the case of perfect state feedback ({xt}
and {φt} are observed) and ut = −∑i Kiφi xt , the location of the static closed-loop
poles would be constant over the full control interval.

Using the radar with modal sensor augmentation, the coefficients of PME(B)

can be determined. Figure 7.3 shows the performance of the regulator ut =
−∑i Ki Rxφi . The flight path of the RPV is displayed as the solid curve. The
PME(B) generates estimates of location along with guiding the RPV. The feather
plot and the one σ -uncertainty ellipses are shown as well. For clarity, the ellipses
are shown every 0.4 s. Not only is the track better usingPME(B) but the envelope of
the uncertainly curves represents the actual path error quite well. This is in contrast

Figure 7.3. A sample path of the controlled RPV using PME(B).
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with the EKF(W=1)-based regulator for which the putative one-σ ellipses differ
from the actual path by as much as 15 standard deviations.

The error ellipses generated by PME(B) are relatively slow to decrease in ampli-
tude. This is due to the poor modal sensor and the residual effect of modal estimation
errors. At the end of the path, the PME(B)-based regulator is certain of its location.
The guidance to the capture region is accomplished with small influence from the
failure.

In lieu of the pole-invariant regulator, PME(B), an averaging analogue can be
used (labeled PME(B̂)). The regulator is still ut = −∑i Ki Rxφi , but Rxφ is com-
puted from the PME using

dx̂t =
∑

i

(Ai − B̂t Ki )Rxφi dt,

where B̂t is short for
∑

i φ̂i Bi . The control signal is neglected in computing the
higher moments. During transients, this regulator does not maintain the filter poles
in their desired locations. The poles of the estimator return to their design values
whenever the estimation quality is good (φ̂t ≈ φt ). The performance of the regulator
based upon PME(B̂) is shown in Figure 7.4.

The track of thePME(B̂)-regulator is shown along that of thePME(B)-regulator
in an expanded window near the capture region in Figure 7.5. The EKF(W=1)-
regulator is worse than either of these and its track does not enter the window shown
during the simulation interval. The PME(B)-regulator takes a more direct path to
the station than does the PME(B̂)-regulator. The latter also tends to loop out during

Figure 7.4. A sample path of the controlled RPV using PME(B̂).
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Figure 7.5. The closed-loop response of PME(B) and PME(B̂) near the capture region.

the initialization transient when the regulator is turning the RPV toward the station.
Despite its more direct approach to the station, the PME(B)-regulator overshoots
less than the PME(B̂)-regulator, and for this portion of the scenario, it ends nearer
the center of the capture region.



8
Target Recognition and Prediction

8.1 Problem Statement

State estimation and control is made difficult in a hybrid system by the multiplicative
nonlinearities in the equation of base-state evolution. The PME fuses complemen-
tary data streams using the dual path architecture shown in Figure 4.1 in a finite-
dimensional algorithm for approximating the Gt -error moments useful in a broad
range of applications.

In earlier chapters we have used the PME to estimate the base-state of a moving
platform (called here the target). In these applications, a plausible motion model
for the target was known a priori. There are situations in which this important
information is lacking, for example in cases where the target must be identified
while simultaneously tracking it and predicting its future motion. Identification in
this context is called automatic target recognition (ATR). Prediction can take many
forms, but we will focus on predicting the location where the target intersects a
boundary in state space.

Uncertainties in target identification compound those already present in target
location at time of detection and the accretion of disturbances along the path.
Model-based path-following algorithms utilize a formal model to represent target
evolution, and the selection of a tracking algorithm is based upon the target dy-
namics as articulated in the model. Because the tracking algorithm is tuned to a
particular dynamic class, it is advantageous to know the proper class in advance,
or if unknown, to identify it as soon as possible. Often the tracking and identifi-
cation aspects of this problem are treated separately: ATR is accomplished using
one sensor (e.g., from a picture of the target generated by an imager), and location
estimation using another (e.g., a radar). High level tracking/ATR fusion architecture
could involve:

• Using the ATR to identify the target type and an EKF to track and predict
using the model identified by the ATR.

171
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• Tracking/prediction with an EKF using some kind of average target dy-
namics of the target aggregate. ATR would be handled as a separate (or
subsidiary) problem.

In the former case, an additional level of uncertainty is introduced by the vari-
ability, over time, of target identification. The ostensible target might be identified
as being in one class at time t = t1 only to be reclassified at a later time. In the
latter case, the dynamic model used to generate the estimates, while constant, is not
specific to any actual target. The method of average dynamics is common, and it
must be said that an EKF derived in this way performs surprisingly well given that
the model is necessarily poor. This seems to be yet another example of the principle
that poor models do not prevent good estimation if the SNR is high.

With imaging sensor/processor outputs coming into common use, the spatially
extended features of the target should be processed, along with their more pro-
saic brethren, to achieve simultaneous target recognition and position estima-
tion/prediction [MSG95, TRK92]. As we have seen, the PME generates estimates
of all elements of the comprehensive state vector including the mean position and
velocity of the target (along with suitable uncertainty measures). This chapter in-
vestigates a problem in which the target dynamics are not known a priori. This
situation arises when targets of different classes may appear in an engagement. Tar-
get recognition is achieved both from direct measurements (e.g., the shape of the
target in the image) and from the angular motion as determined from image data.
Because of subtle biases in the models, the latter may not, in itself, be adequate for
ATR.

8.2 Recognition and Tracking a Maneuvering Target

Synthesis of a model-based tracker begins with a quantitative representation of
target motion. The simple two-dimensional motion model used here is given in (4.1):
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[
wx

wy

]
, (8.1)

where {X, Y } are position coordinates, and {Vx , Vy} are associated velocities. The
target is subject to both a wideband omnidirectional acceleration represented by
the Ft -Brownian motion {wx , wy} and a maneuver acceleration represented by the
turn rate process {�t}.

For this analysis, it will be assumed that the targets distinguish themselves by
their agility. The maneuver indicator process, {αt}, is an Ft -Markov process on the
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canonical unit vectors: αt = ei if �t = ai ; i ∈ K. Equation (8.1) can be written as
a LJS:

dxt =
∑

i

Ai xtαi dt + Cdwt ,

where the definition of {Ai ; i ∈ K} is evident from the context. The motion model
(8.1) is a hybrid, nonlinear, stochastic differential equation in which the maneuvers
create a family of motion modes within an LGM framework.

In contrast to the situation studied in Chapter 4, suppose that there are R different
kinds of targets. Denote the R-dimensional target-class indicator vector by rt : rt =
ei if the target is of the i th class. Different targets have different capabilities. Suppose
the tempo of maneuvers is a target class dependent Markov chain: If rt = ei , {αt} is
a Markov chain with K ×K -transition rate matrix Qi

α. Again divide the orientation
range space of the target into L equally spaced bins, and let the orientation indicator
process be {ρt}. The angular bin sequence will also be represented with a Markov
process for a specific turn rate× target class: If αt ⊗ rt = ei , {ρt} is Markov with
transition rate matrix Qi

ρ . Target type is constant: rt ≡ r0. The comprehensive
maneuver-state of the target is given by φt = αt ⊗ rt ⊗ ρt . The KLR × KLR-
dimensional transition rate matrix, Q, for the Markov process {φt} can be produced
using elementary methods if the primitive processes have no common jumps. The
definition of Ai can be directly extended to φt and the dynamics {φt} are given
by

dφt = Q′φt dt + dmt , (8.2)

where {mt} is an Ft -martingale.
In tracking/recognition, the modal measurement will be processed to yield both

orientation and the ostensible target class. We postulate, as before, two sensors:
• The point sensor (the radar) produces a sequence of range-bearing mea-

surements: y[k] = H x[k]+ n[k].
• The modal classifier places the measured orientation× type into one of LR

bins at a rate λ frames/s:

dzt = λPφ dt + dηt .

The modal-state measurement sequence, {zt}, is a counting process of dimension
LR, the i th component of which is the number of times on [0, t] the imager has
placed the target orientation/type in bin i . The quality of the imager is determined
both by the frame rate, λ, and by the fidelity of the processing of a single data frame,
the latter embodied in an LR× LR discernibility matrix P.

The PME for this problem is as given in Chapter 4. The modal observation
contains both target type and orientation. Let λt = λP(rt ⊗ ρt), and let {ϑt} be a
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piecewise constant process with increments

�ϑ = λP′(λ̂−1
t ∗�zt).

If the RL-dimensional vector λt is repeated K times, ϑt = 1K ⊗ ϑt is formed.
From φ̂t , it is a direct calculation to find α̂t and r̂t (the Gt -probability of target
class):

the PME: continuous base-state; time-discrete measurements

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

Ai Rxφi ,

d

dt
Pxφ =

∑
i

Ai P(xφi )φ + Pxφ Q,

d

dt
Pxx =

∑
i

(
Ai P(xφi )x + (·)′)+ Rχ ,

d

dt
Pxxφm =

∑
i

(
Ai P(xφi )xφm + (·)′ + Pxxφi Qi,m

)
.

At a modal observation:

φ̂
+ = φ̂

− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ = −�x̂�φ̂′ +
∑

k

Pxφφk�ϑk,

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x

−P+xφm
�x̂ ′ +

∑
k

Pxxφmφk�ϑk .
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At a base-state observation:

�x̂ = γx�νx ,

�Pxφ = −γx H Pxφ,

�Pxx = −γx Ryyγ
′
x ,

�Pxxφm = −γx H Pxxφm − Pxxφm H ′γx .

8.3 Automatic Target Recognition

To illustrate the versatility of the PME in a problem of tracking and identification,
return to the antiship missile scenario studied earlier. This time suppose that there
are two possible target types: rt ∈ {e1, e2}. The targets have distinguishing turn
dynamics and shapes [Kuh92].

Target(Nom): This is the nominal antiship missile and is close to that
studied in Chapter 4. The set of permissible turn rates is given by

�t ∈ {0.2 r/s, αt = e1; 0 r/s, αt = e2;−0.2 r/s, αt = e3}.
The mean sojourn time in a turn is 4 s (5 s in Chapter 4), with each
turn being followed by a coast. There is symmetry around coast, and the
initial maneuver modes are equally likely. Coast has a mean duration of
5 s.

Target(Agl): The second target is more agile than Target(Nom). The set
of turn rates is

�t ∈ {0.4 r/s, αt = e1; 0 r/s, αt = e2;−0.4 r/s, αt = e3}.
The mean sojourn time in each of the maneuver states is 2 s. A coast has
mean duration 5 s.

Although the mean angular increment for both targets is the same, 0.8 r,
Target(Agl) executes the turn in half the time. The target types will be assumed to
be equally likely.

The sensor suite consists of the radar used earlier (errors are Gaussian with stan-
dard deviation 40 m in range and 1.75 mr in bearing) and a collocated imager. The
nominal radar interdwell time is 1 s. The radar-exclusive EKF selected for com-
parison is found by neglecting the maneuvers (labeled EKF(W = 1) or EKF(1)).
The target types are not distinguishable by EKF(1). They differ in their turn dy-
namics but these are ignored by the EKF: The dependence of the target model on
type is moot in EKF(1). The initial covariance is as in Chapter 4 (diagonal with
standard deviation in position (100 m) and velocity (20 m/s)). EKF(1) is initialized
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Figure 8.1. Performance of EKF(1) on a jinking path.

on the true target motion at the time of detection. The target motion is most closely
described as coming from target class Target(Nom). A sample showing the per-
formance of EKF(1) on a portion of the path is shown in Figure 8.1. This extends
and combines data from Figures 4.3 and 4.5.

Now complement the radar with an imager. The PME must accomplish two
tasks simultaneously: target identification and tracking. It will do this on the ba-
sis of a direct measurement of type and also on the estimated turn dynamics. It
will be assumed that the imager operates at λ= 10 frames/s. In orientation, the
imager is of the same quality as that given in Table 5.2, but smaller orientation
bins will be used than those used there: L = 24 (15◦ bins). Target classification is
also achieved from shape or spectral analysis. Each frame is classified as coming
from one of the two target classes. Specifically, suppose the type signature is weak
at the tracking range: P(target is classified as j | target is type j) = 0.55 (labeled
target fidelity (TF)). Table 8.1 gives the attributes of the classifier. The orientation

Table 8.1. Modal sensor
parameters.

Error Type Probability

UDE 0.1
NNE 0.1
PE 0.3
TF 0.55
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Figure 8.2. Target identification using PME(0.55, 10).

errors are mutually exclusive, and if it is assumed that the target type classification
is independent of the orientation classification, P can be produced. From this the
PME can be deduced. We denote this PME by PME(TF= 0.55, λ=10), or just
PME(0.55,10).

The modal classifier is not of particularly good quality, correctly classifying target
orientation only 50% of the time in orientation and 55% of the time in type. The
standard deviation of orientation error is 75◦. This error is so big as to suggest the
imager would be of little use in tracking. Figure 8.2 shows the Gt -P(Target(Nom))
as computed by PME(0.55,10). PME(0.55,10) is puzzled by the first turn since
the path matches neither dynamic model well and has an anomalous acceleration
before jinking. When a turn is suspected, the PME tends to think the target is the
more agile one (e.g., at∼87 s). Ultimately the target is identified, and since rt = e1

is absorbing, volatility in Gt -P(Target(Nom)) diminishes.
Figure 8.3 shows the radial error for both algorithms on a sample path. With the

perfect initialization, the EKF(1) is superior to PME(0.55,10) into the first turn.
In contrast to the errors in the EKF (800 m), PME(0.55,10) keeps errors during the
turn to less than 150 m (75 m after a radar update). It is close to the performance
achieved by PME(IG) in Chapter 4: Finer orientation bins help but poorer image
quality and multiple target classes hinder tracking.

Figure 8.4 contrasts the performance of EKF(1) and PME(0.55,10). The poor
performance of the EKF is typical. PME(0.55,10) does a much better job, and if
Figure 8.4 is inspected carefully, it is seen that the area of the error ellipses of
PME(0.55,10) decreases as confidence in target identification increases.
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Figure 8.3. Mean radial tracking error for EKF(1) and PME(0.55,10).
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Figure 8.4. Tracking performance of EKF(1) and PME(0.55,10).

To better understand the issues engendered by ATR, let us generalize the previous
scenario. Instead of two possible targets there are now three (rt ∈ {e1, e2, e3}):

• Target(Nom), rt = e1;
• Target(Agl), rt = e2;
• Target(Lan), rt = e3.

The third target, Target(Lan), has a more languid motion than do either of the
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Table 8.2. PME frame rate and error parameters.

PME UDE NNE PE TF λ

PME(0.55,10) 0.1 0.1 0.3 0.55 10
PME(0.75,10) 0.1 0.1 0.3 0.75 10
PME(0.50,10) 0.1 0.1 0.3 0.5 10
PME(0.55,1) 0.1 0.1 0.3 0.55 1

others. The set of turn rates is

�t ∈ {0.1 r/s, αt = e1; 0 r/s, αt = e2; −0.1 r/s, αt = e3}.
The mean sojourn time in each of the maneuver states is extended to 8 s with the
mean duration in coast again 5 s.

Each target has the same mean turn amplitude (46◦) and the same mean sojourn
time in coast. The targets are distinguished by their turn rates when they turn and by
the probability that they are in a particular motion mode; for example, since the coast
durations are the same for all of the targets, Target(Agl) will spend more time in
coast mode than either of its fellows. Not every target is present in every encounter.
In one case, the tracker-ATR must choose between Target(Nom) and Target(Agl),
and in another between Target(Nom) and Target(Lan). At the beginning of an
engagement, the PME knows the pertinent target types and assumes them to be
equally likely.

Again we will look at an encounter involving a target modeled most closely by
Target(Nom). The same radar will be used along with a collocated imager. As be-
fore, the imager operates at a nominal rate of λ= 10 frames/s with 15◦ orientation
bins. The imagers are listed in Table 8.2. They all have the same quality for clas-
sifying orientation, but they differ in target recognition, and in one case, the frame
rate is slower than nominal. The radar-exclusive algorithm selected for comparison
is again EKF(1).

8.3.1 Engagement Nom-Agl

In this first engagement, suppose the trackers are not sure whether the target is of
classTarget(Nom)or of classTarget(Agl). Consider first the nominal track/recogni-
tion algorithm,PME(0.55,10). Image resolution is not particularly good. Figure 8.4
shows the path of the target along with the one-σ error ellipses. Figure 8.5 shows
the probability that the target is in the coast mode as generated by PME(0.75,10)
through PME(0.50,10): the Gt -P(αt = e2) for the PMEs over the range from good
target type indication to no type indication at all. Target detection occurs at t = 75
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Figure 8.5. Coast mode identification using PME(0.75,10), PME(0.55,10), and PME

(0.50,10).

in the midst of a short coast. All of the PMEs move from their initial modal uncer-
tainty toward favoring coast. The coast actually ends at t = 77.3, but none of the
PMEs are immediately aware of this. The initial orientation is centered in an angu-
lar bin, and the orientation angle of the target must traverse the bin to recognize the
transition in {αt}. The PME with the most accurate target recognition processor is
most conservative in declaring the target is coasting;Target(Nom) spends less time
in coast than does Target(Agl). Figure 8.5 shows only the time interval [75, 90]
s because all three of the PMEs show the same estimates of the modal path after
t = 90 s. Note that the PMEs detect certain parts of a turn quite accurately – when
the orientation crosses a bin boundary, the target is turning. Identifying a coast is
inherently more problematic. The coast mode manifests itself in the absence of
angular bin crossings, an equivocal signature. This causes all of the PMEs to think
the coast mode lasts longer than it really does, and this tends to favor that target
with the longest sojourns in coast – Target(Nom) in this case.

A sample path of the target recognition response for PME(0.75,10) through
PME(0.50,10) is displayed in Figure 8.6: Gt -P(Target(Nom)). Beginning at maxi-
mum uncertainty,PME(0.75,10) quickly moves toward α̂t = e1. This is not surpris-
ing given the accurate classification processing inPME(0.75,10). Less accurate type
measurements causePME(0.55,10) andPME(0.50,10) to be considerably more hes-
itant to declare Target(Nom). The coast sojourn (at ∼85 s) causes PME(0.55,10)
(but not PME(0.50,10)) to become less sure of its target selection. The estimate
generated by PME(0.50,10) is less volatile than that generated by PME(0.55,10).
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Figure 8.6. Target recognition using PME(0.75,10), PME(0.55,10), and PME(0.50,10).

This is not surprising since recognition in the PMEs is achieved by processing
orientation estimates and this has a smoothing effect.

Accurate shape processing is helpful in target identification, but its efficacy in
tracking is considerably less. The Markov maneuver model is a coarse representa-
tion of the sojourn times in a bin or in a motion mode. The lifetimes of the modal
process are much more regular than the motion model suggests, and without mak-
ing this information explicit in the PMEs, the link between the modal process and
the target type is attenuated. The Markov model is useful, however, for quantify-
ing the acceleration geometry. The contrast between the tracking performance of
PMEs is not great. Figure 8.7 shows the radial tracking error for PME(0.75,10)
and PME(0.50,10) (the extremes of recognition fidelity) on the portion of the path
during which thePMEs are identifying the target: t ∈ [75, 100] s. The radar samples
are independent, but the imager samples are the same. Before target identification
is conclusive, the radial error associated with PME(0.50,10) tends to be smaller
than that for PME(0.75,10), at least in the extremes. Single samples should not be
over interpreted, but it is evident that target recognition is not definitively linked to
tracking error.

The image rate in the PMEs considered thus far has been 10 frames/s. If this
creates an excessive computational burden, the frame rate can be reduced. Figure
8.8 shows the target and the error ellipses calculated by PME(0.55,1), which uses
the nominal imager/radar with the frame rate of the imager reduced by a factor of
10. Comparing these ellipses to those for PME(0.55,10) (see Figure 8.4), we see
that the PME is less certain of its estimates when the sample rate is slower. The
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Figure 8.7. Radial tracking error for PME(0.75,10) and PME(0.50,10).
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Figure 8.8. Tracking performance for PME(0.55,1).

ellipses grow significantly during intrasample intervals, and the error grows during
transitions in maneuver mode. Still, in contrast to EKF(1), the true path is seldom
far beyond the envelope of the one-σ error ellipses.

Target recognition degrades with the slower frame rate. This is caused both by
the paucity of direct measurements and by the difficulty in determining the motion
mode at the lower frame rate. Figure 8.9 shows a sample of target recognition for
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Figure 8.9. Target recognition for PME(0.55,10) and PME(0.55,1).

PME(0.55,1) superimposed on the previously displayed plot of PME(0.55,10). A
higher frame rate leads to quicker recognition, though the ATR does tend to be more
volatile (see the coast sojourn at∼87 s). The larger error circles appearing in Figure
8.8 are associated with the intervals in which the confidence in target identification
is low. Once the target type is known, PME(0.55,1) proceeds to maintain its track,
but the tracking errors grow at the beginning of the right turn.

8.3.2 Engagement Nom-Lan

For reasons discussed earlier, the PME is such that the target identification tends to
be biased toward the tamest target in a group. In the preceding scenario, the tame tar-
get was the actual target, Target(Nom). Consider the alternative situation in which
the permissible targets are Target(Nom) and Target(Lan). The trajectory, again
associated with Target(Nom), is the flight path shown in Figure 8.1. The gains of
PME(0.75,10) through PME(0.50, 10) must be recomputed to reflect this changed
target environment. Figure 8.10 shows the motion mode estimate (probability of
coast) over the early part of the engagement: t ∈ [75, 90] s. Modal estimation is no
more difficult in the Target(Nom)/Target(Lan) engagement if the target classifica-
tion data are accurate: The curves associated with PME(0.75,10) are essentially the
same in Figures 8.5 and 8.10. When the target type measurements are of low quality,
modal identification degrades. PME(0.55,10) and PME(0.5, 10) again differ little,
but they differ considerably from the similar Target(Nom)/Target(Agl) situation.
This is particularly noticeable during the interval of coast, at∼85 s. The difference
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Figure 8.10. Coast mode identification using PME(0.75,10), PME(0.55,10), and PME

(0.50,10).

between the PMEs is much less when the target is turning, because of the relatively
unambiguous signature of this motion mode.

Target recognition from motion reconstruction is more difficult in the Target

(Nom)/Target(Lan) engagement. Figure 8.11 shows the computed probability of
Target(Nom) for PME(0.55,10) and PME(0.50,10) during the initial 25 s of the
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Figure 8.11. Target recognition for PME(0.55,10) and PME(0.50,10).
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encounter. The response of PME(0.75,10) is not shown because it differs little
from that shown in Figure 8.6: In a high SNR environment, target identification is
based primarily on the direct type measurement. Not surprisingly, PME(0.55,10)
is able to identify the target, though it takes 5 s more to do it conclusively than
in the earlier scenario. What is surprising is the response of PME(0.50,10). Ul-
timately the target will be identified since rt = e1 is an absorbing state. But with
PME(0.50,10), Gt -P(Target(Nom)) shows no appreciable motion in that direction
on the interval shown. The Markov motion model, by itself, is insufficient in this
case to differentiate the targets in a timely manner.

In the Target(Nom)/Target(Lan) engagement, it is more difficult for PME

(0.55,10) to identify the target, and this is reflected in the size of its error ellipses
(see Figure 8.12). Comparing this plot with Figure 8.4, PME(0.55,10) tracks about
as well as it did in the Target(Nom)/Target(Agl) scenario. Until PME(0.55,10) can
classify the target with confidence, its error ellipses are increased to make the un-
certainty associated with the proper motion model explicit (see the first left turn).
Nonetheless the target trajectory is well contained by the envelope of the error
ellipses.

Clearly then, thePME is a more accurate tracker than is an EKF. If path following
is the only requirement, target recognition may not be needed for high quality
performance. Without direct target type measurements, the PME does not provide
an accurate indication of the target class. This is primarily due to the fact that the
maneuver and the orientation processes are not truly Markov processes. A maneuver
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Figure 8.12. Performance of PME(0.55,10) in the Target(Nom)/Target(Lan) engage-
ment.
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model that more clearly identifies the modal residence time distributions could be
expected to improve performance. (See the discussion of this issue in Chapter 4.) It
seems, however, to be more efficient to use more detailed shape analysis to acheive
target recognition rather than make the motion model more specific.

8.4 Path Prediction

Although the need to track agile targets is evident, in some applications it is also
necessary to predict their future motion. For example, in theater air defense systems
a diverse set of sensors is employed to identify threats at launch, predict their
path, and intercept them at an opportune time. Because of the predictable motion
dynamics of ballistic targets, good performance is achieved against them. For such
targets, conventional techniques, with small modifications, can be employed for
both estimation and prediction. A more difficult situation arises when the targets
are smart (i.e., maneuvering) [Tin95].

Synthesis of a predictor begins with a quantitative representation of target motion.
Suppose the target is a missile following a near-ballistic path in the plane (flat earth;
constant gravity, g). A planar model is given by

d


X
Z
Vx

Vz

 =


0 0 1 0
0 0 0 1
0 0 0 −�
0 0 � 0




X
Z
Vx

Vz

 dt −


0
0
0
g

 dt +


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
,

(8.3)

where the state vector xt is composed of (X, Z ), the (downrange, altitude) coor-
dinates, and (Vx , Vz), the associated velocities. The nominal acceleration process
consists of two parts: a gravity bias and the ubiquitous omnidirectional Brownian
excitation, {wt}, with intensity W . Additionally, there are periods during which
the missile may change its direction more suddenly. This is represented by the
“maneuver” process, {�t}.

In most tracking applications, a radar (or equivalent sensor) provides a center-of-
reflection measurement of the location of the target. This range-bearing measure-
ment can again be modeled as y[k] = H x[k]+ n[k], but the radar gain, H , depends
upon the target–sensor geometry and will vary considerably during an engagement.

The EKF has been used to track ballistic motion with considerable success. With
such unadorned dynamics, an EKF can be used to estimate the downrange position
at impact as well as the one-σ impact uncertainty interval. The determination of
this alert region is termed impact point prediction (IPP). The accuracy of this
extrapolation has important implications. The assets in most danger from the missile
are those at or near the impact point. Assets within a reasonably chosen uncertainty
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interval around the projected impact should be on alert status and should take action
to mitigate the effect of the threat.

To determine the impact region explicitly, suppose at time t0 the state of the EKF
is (x̂ t0, Pxx(t0)). The missile will impact when its altitude is zero (when Zt = 0).
The time of impact is random, but we can estimate time-to-go (tg) by extrapolating
along a ballistic path forward from x̂ t0 to Ẑt = 0. The impact point (X imp) is the
downrange position at this time. Thus the estimate of time-to-go is simply

tg =
(

V̂z +
√(

V̂ 2
z + 2gẐ

))/
g.

During this time, the missile will move downrange to the point

X imp = X̂t0 + tg V̂x .

This extrapolation to impact is derived from a parabolic approximation to the missile
path.

In IPP, not only must the mean location of impact be determined but the un-
certainty region as well. To determine the latter, note that a one-σ interval can be
placed about X imp by computing the error covariance at the time of impact: Pxx(tg).
Beginning at Pxx(t0), we can find the uncertainty region by integrating

d

dt
Pxx = APxx + Pxx A′ + E2 ⊗ W.

The downrange coordinate is Xt . The variance of the downrange impact point is

(Pxx(tg))11 = σ 2
X (tg).

Direct calculation yields

σ 2
X (tg) = e′1(Φ(tg, 0)Pxx(t0)Φ(tg, 0)′)e1 + W t3

g ,

where the transition matrix for the ballistic motion is

Φ(tg, 0) =


1 0 tg 0
0 1 0 tg

0 0 1 0
0 0 0 1

 .
The extrapolation logic for the PME is considerably more complicated than

was the case for the EKF. Suppose, that at time t0, the PME is at state {φ̂t0, x̂ t0,

Pxx(t0), Pxφ(t0), Pxxφ(t0)}. From these initial conditions, tg must be estimated by
integrating the expected motion forward to impact:
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PME: impact point prediction

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

Ai Rxφi ,

d

dt
Pxφ =

∑
i

Ai P(xφi )φ + Pxφ Q,

d

dt
Pxx =

∑
i

(
Ai P(xφi )x + (·)′)+ Rχ ,

d

dt
Pxxφm =

∑
i

(
Ai P(xφi )xφm + (·)′ + Pxxφi Qim

)
,

with impact at Ẑt = 0 and time tg. The variance of the downrange impact point is
again σ 2

X (tg).

8.5 A Missile Test in Australia

During October and November 1995, in a cooperative experiment, the U.S. Ballistic
Missile Defense Organization (BMDO) and the Australian Defence Science and
Technology Organization (DSTO) conducted a series of multistage rocket launches
at the Woomera Test Range in South Australia [CSB96b]. The primary purpose of
the experiment was to launch scientific payloads, but the tests also provided a means
to exercise some algorithms that had been proposed for long-range detection and
tracking. The Innovative Science and Technology Experimentation Facility (ISTEF)
of BMDO furnished tracking sensors that provided precision range and angle–angle
track data during the trials. GPS data were also available for post launch analysis.
The totality of data generated from this diverse grouping of sensors permitted
tracking algorithms to be evaluated in a realistic environment. The demonstration
verified the utility of infrared (IR) and radar data fusion for following a nearly
ballistic trajectory and showed that track data and video could be transmitted in
real time to a remote site for processing and interpretation. The experiment did not
involve a maneuver-capable target. It is useful, however, to abstract and generalize
the experiment and show that when the target has maneuver capability, the PME is
a useful alternative to the current system based upon an EKF.

At Woomera, the payload had a boost phase. After separation, the payload flew
a near-ballistic trajectory until impact. The Woomera sensor suite included both a
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radar and an IR sensor. Location measurements were from the Woomera Adour C-
band radar (for range and bearing) and the ISTEF optical tracking mount equipped
with a suite of telescopes and sensors, which provided precision angle track data.
The angular data from the IR sensor were much more accurate than those from the
radar. The radar and optical sensors were located 27 km downrange and together
acted as an equivalent point-target sensor, which we label the IR/radar. The origin
of the (X, Z )-coordinate system is placed at the sensor. From the raw Woomera
data it was determined that the nominal IR/radar errors have standard deviations of
40 m in range and 0.4 mr in bearing (at 150 km this implies a cross line-of-sight
error of about 70 m). The nominal IR/radar interdwell interval is 0.1 s. Despite
these highly accurate measurements, the IR/radar tracker was unable to maintain
lock on the early and relatively benign portion of the path.

To complicate the experiment, suppose that the missile has maneuver capability
that is utilized to make tracking and prediction difficult near impact. Specifically,
the missile accelerates from launch (at t = 0 s) for 44 s at 5.8 g. Payload motion
at separation is represented by a 3 s, 3 g turn down. The target flies a ballistic path
on the complement of these two intervals until t = 450 s. At this time the missile
executes a 5 s, 3 g pull up for evasive purposes. The missile then flies a ballistic path
until impact. Table 8.3 summarizes the acceleration modes. Detection occurs 50 s
after launch. This initialization gives each tracker 22 s to reach quiescent operation
before the separation event occurs. The nominal path of the payload is shown in
Figure 8.13. The evasive maneuver is barely visible in the figure because of its short
duration and the high speed of the payload. Until the terminal maneuver, the path
is essentially that flown in the Woomera experiment.

To test the algorithms that follow, each is used on a single sample of the target
path. Suppose the trackers begin with initial standard deviations of 100 m in the
position coordinates and 20 m/s in the velocities. Because of the small intensity
of the omnidirectional accelerations, W = I. The tracker at Woomera was an
EKF. With these parameters, the nominal EKF (labeled EKF(W = 1, λ = 10), or
EKF(1,10)) can be produced.

Table 8.3. Motion modes.

Time Status

0 launch
(0, 44) boost @ 5.8 g
(72, 75) separation @ 3 g
(450, 455) evasive maneuver @ 3 g
528 impact
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Figure 8.13. The path of the maneuvering missile.
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Figure 8.14. Performance of EKF(1,10) near the reentry maneuver.

The reentry maneuver begins slightly below (203,140) km. Figure 8.14 shows an
expanded feather plot in this region. Before the maneuver begins, EKF(1,10) has
located the target and has little error in its velocity estimate. EKF(1,10) does not
expect the pull up, however, and falls far behind when it occurs: The error exceeds
200 m and is primarily in the downrange direction. The error ellipses are barely
visible in the figure.
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The failure of EKF(1,10) to follow the reentry maneuver is explained in part by
its inability to compute its own error covariance correctly. Going into the pull up,
both the error and the error ellipses are small. At this time, the error ellipses enclose
the target path and give a good indication of the uncertainty region for this specific
tracker. The situation changes after the maneuver. EKF(1,10) lags the turn but is
oblivious of the fact. For EKF(1,10) the uncertainly ellipses do not give a valid
indication of tracking fidelity; the true path is several standard deviations away
from the estimate. The maneuver-induced correction takes about 10 s (not shown),
and this for a turn that lasts only 5 s.

Suppose now that the IR/radar measurements are augmented with those from
a modal sensor. Although the two turn events induce different target turn rates,
suppose a low dimension model is used in the design of the PME: Let

�t ∈ {15 mr/s, αt = e1; 0 r/s, αt = e2; −15 mr/s, αt = e3}.
This coarse parsing of the turn rates reduces the complexity of the equations for the
PME gains, and such simplifications should be sought whenever possible. A similar
simplification is used to quantify the maneuver tempo: The mean sojourn time in
a ballistic phase will be 50 s, while that in a turning mode will be 5 s. This single
tempo is crude and, more importantly, does not alert the PME to regions of likely
evasion. Each turn will be followed by a ballistic segment. From a nonmaneuvering
mode, it will be supposed that turns in either direction are equally likely. From this
description, the maneuver dynamics (i.e., Q) can be deduced.

The quality of the modal sensor is delineated by the frame rate, λ, and the dis-
cernibility matrix, P. First suppose that the modal sensor is operating at the rate of
the IR/radar: λ = 10 frames/s. The discernibility matrix characterizes the fidelity
of the modal sensor/processor for a single frame. In this study, the features in an
image are assumed to lead directly to a classification of turn rate – target orientation
is not measured at this range. The sensor is of good quality, correctly classifying the
maneuver mode 80% of the time with the errors uniformly distributed over the com-
plementary bins. From this, PME(W = 1, λ= 10) (or, more simply, PME(10)) can
be deduced. A summary comparison of the tracking algorithms is given in Table 8.4.

Table 8.4. Tracker parameters.

Radar Modal Radar Modal
Algorithm Rate Rate Error Error

EKF(1,10) 10/s — 40 m/.4 mr —
EKF(1,1) 1/s — 40 m/.4 mr —
PME(10) 10/s 10/s 40 m/.4 mr 20%
PME(1) 1/s 10/s 40 m/.4 mr 20%
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Figure 8.15. Performance of PME(10) near the reentry maneuver.

The performance of PME(10) is given in Figure 8.15 and is far superior to that
of EKF(1,10). At the scale of the figure, the errors of PME(10) are barely visible.
To contrast the two trackers in more detail, Figure 8.16 shows the radial error for
both EKF(1,10) and PME(10). Both trackers do well on ballistic segments with
errors typically below 20 m and excursions to 40 m (and 60 m for the EKF). This
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Figure 8.16. Radial tracking error for EKF(1,10) and PME(10).
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Figure 8.17. Impact point prediction for EKF(1,10) (continuous) and PME(10) (four sam-
ples) together with 1-σ error bounds.

is reasonable given the IR/radar accuracy. The PME performs slightly better than
the EKF during ballistic motion, which is mildly surprising given the fact that the
modal sensor merely confirms the preconception of the EKF. During the reentry
turn, the radial error of EKF(1,10) explodes to approximately 300 m while that of
PME(10) remains around 30 m. This is a performance improvement of a factor of
10 with a similar improvement at separation.

Figure 8.17 shows a plot of X imp and the associated uncertainty interval as
computed by EKF(1,10) as a function of time since launch. (The local variability
in the uncertainty interval is due to the errors in the IR/radar measurement.) After
detection, EKF(1,10) predicts an impact at about 205 km downrange. By placing a
one-σ region about the expected impact point, EKF(1,10) predicts with confidence
that impact will occur within the interval in [195,215] km. But the actual impact
point is 250 km. This lies about four standard deviations from X imp; this is a major
error since the actual impact point would naturally be considered to be outside the
area of influence of the target in this engagement.

Impact prediction does not change much between detection and separation. After
separation the impact point expected by EKF(1,10) suddenly shifts – it is closer
to 240 km. As time moves on, the uncertainty region narrows due to the fact that
the time-to-go is getting shorter: {Pxx} is about constant and the integration time is
growing ever smaller. While the absolute prediction error is less than it was before
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separation, the uncertainty interval becomes small before the reentry maneuver,
engendering again a false sense of security in those near the actual impact point.
After the reentry maneuver, the predicted impact point moves to 250 km with
the uncertainty interval becoming quite short. Here EKF(1,10) makes accurate
calculations because no more turns take place.

It is easy to intuit the qualitative results in Figure 8.17, but the figure affords a
clear warning regarding myopic use of an EKF as a predictor. The dynamic model
that underlies the algorithm is incorrect (it is oblivious of the possibility of maneu-
vers), but with frequent measurements, the EKF can track the target well over most
of its path. However, its errors are magnified when the EKF is used for prediction;
there is insufficient data to disabuse the predictor of its model-induced biases. Its
inability to predict the impact point – it was off by 40 km – is not surprising. A
ballistic extrapolation is the most natural choice after boost. It is the misplaced con-
fidence in its prediction that is so troubling. After separation, the predicted impact
is adjusted, but the uncertainty region is smaller; prediction accuracy normalized
by the computed variance is improved little. This figure exposes the fallacy of using
the EKF to activate fixed-point defense systems; the wrong ones may be alerted
and the right ones may be told they are outside the attack envelope.

Calculation of X imp for the PME is more difficult. It cannot easily be done as a
running function of time as was the case for EKF(1,10). For PME(10), Figure 8.17
shows the value of X imp along with the one-σ uncertainty interval for four times:
t = 70 s, just before separation; t = 300 s, after separation; t = 444 s, before
the reentry maneuver; and t = 480 s, after the final maneuver. The value of X imp

for PME(10) differs little from that computed by EKF(1,10). Each extrapolation
took place in a ballistic interval, and because of symmetry, the PME extrapolation
has the same character as the EKF. The one-σ uncertainty interval is far more
representative of the actual impact point than is that computed from the EKF. At
every point, even those immediately preceding a turn, the true impact point is in
the alert region. Use of the PME is warranted in this problem if only because of the
improvement in IPP.

One of the objectives of the Woomera experiment was to determine if it is pos-
sible to transmit tracking data in real time to a remote processing site. To reduce
the communications burden, suppose that the Woomera IR/radar is again used,
but in an infrequent measurement mode, with an IR/radar interdwell time of 1 s.
(The communication rate has been reduced by a factor of 10.) With this mea-
surement specification, the congruous EKF (labeled EKF(1,1)) can be derived.
Figure 8.18 shows the feather plot of the path following error of EKF(1,1) near
the reentry maneuver. The lower sampling rate causes the error to increase (com-
pare Figure 8.5). The error is again primarily downrange, but in contrast with
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Figure 8.18. Performance of EKF(1,1) and PME(1) near the reentry maneuver (the PME

points are barely visible at this scale).

EKF(1,10), the tracker is very slow to recover from the measurement-induced
transient.

The Woomera IR/radar operating at this same rate can be used in the PME

to create a tracker labeled PME(1). The errors for PME(1) are so small that the
feather plot shows little at the scales indicated. Figure 8.18 shows both EKF(1,1)
and PME(1) near the reentry maneuver. EKF(1,1) is not so sure of its estimates as
was EKF(1,10), but the actual curve is still far from the one-σ confidence region.
The error ellipses for PME(1) are bigger but still enclose the true path (not visible
on this scale).

Extrapolation to impact can be done with both EKF(1,1) and PME(1). The re-
sults differ little from Figure 8.17. Suffice it to say the primary determinant of the
extrapolation uncertainty interval in both trackers is the exogenous acceleration
during the interval to impact, and performance is not very sensitive to the current
tracking error moments.

It is clear that the PME permits a more efficient use of the primary sensor in
this application. The effectiveness of the PME is due to its ability to use the modal
information both for direct updates and for adjustments to the tracker gains and
time constants (see also [CSB96a] and [CS95]). It is difficult to isolate the primary
influence of the modal sensor. However, it can be seen that:

• The tracking error after maneuvers can be reduced with a modal sensor as
an adjunct to the base-state sensor.
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• If the radar sample rate is reduced, tracking performance does not degrade
to the same degree in the PME.

• The extrapolated impact uncertainty region generated by the EKF may lead
to untoward resource allocations. The PME produces a more realistic view
of terminal conditions.

• When processing and track maintenance occurs at a remote site, fewer raw
data updates are required by the PME, with a corresponding reduction in
the demands on communication capacity and quality.



9
Hybrid Estimation Using
Measure Changes

9.1 Change of Measure

In earlier chapters of this book, we studied state estimation and regulation with
an emphasis on time-continuous hybrid plants with a mix of time-continuous and
time-discrete observations. The plant input/state-output representation is such that
each state category is associated with an observation process and filtration: {yt} and
{Yt} for the base-state, and {zt} and {Zt} for the modal-state. Low level data fusion
generates the filtration Gt =Yt ∨ Zt . An engineer seeks practical algorithms for
approximating the Gt -regime probabilities along with those Gt -moments (including
cross moments) important in the application. The primary tool in those chapters was
the polymorphic estimator in its sundry realizations. ThePMEgenerates serviceable
approximations to relevant Gt -conditional moments. Although φ̂t is the vector of
conditional regime probabilities, the PME does not provide the Gt -distribution
function of the zygostate.

The PME is premised on the assumption that the modal measurement is a good
one; at least {zt} is the best measurement available as regards the regime. The
modal measurement is not perfect to be sure, but it is good enough that base-
state× modal-state cross moments depend incrementally upon {zt} alone. This
hierarchical processing structure has its rationale in the way in which the engineer
assembles the sensor suite. For example, the initial design of the panel temperature
regulator for the solar central receiver (see Chapter 5) did not include insolation
sensors. They were added only after it became apparent that acceptable control of the
receiver panel was impossible without them; they were an expensive supplement.
In the same way, the sensor suite used in the example of image-enhanced tracking
may have included an imager, but the imager was originally intended for target
detection and/or recognition. In both examples, conventional sensor fusion took
place at a high level (path fusion) because of the narrow role assigned to the modal
sensors. The PME brings improved performance because it exploits the synergies
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inherent in early data integration. However, even the PME neglects the base-state
innovations in the calculation of the canonical moments and this leads to suboptimal
results.

Perhaps surprisingly, the PME shows itself to advantage even when the regime
measurement is of fairly low quality. This is due to the fact that the PME enjoys
a knowledge of the plant-state geometry and it computes the error cross moments
required to utilize this geometry in its estimates. Despite its success in problems
where the measurement quality and frequency make the assumptions underlying
the PME difficult to defend, there are situations in which the innovations exclu-
sivity tries a designer’s intuition. For example, it might be obvious to an engineer
that the base-state observations could help reduce the frequency of aliasing errors
in {zt}. By ignoring {Yt} in generating { φ̂t}, lower quality estimates necessarily
result.

Exact generation of the Yt -zygostate moments is not possible in any practical
sense. Unless the modal measurements are flawless (and frequent), the same state-
ment applies to the Gt -moments. In this chapter, we will look at an approximation to
Gt -estimation in the context of a time-discrete plant and observation. It is useful to
recall that the IMM is a time-discrete Yt -estimator of the zygostate when there are
no base-state discontinuities induced by the modal transitions. The IMM generates
a usable approximation to {x̂t} in applications where high accuracy calculation of
{ φ̂t} and the higher cross moments is not required.

In this chapter we will use Bayes’ formula to generate G[k]-estimates, and we
will use pruning instead of merging to manage the level of algorithmic complexity.
As in the referenced studies of the MM-estimators, attention will be focused on
plants without endogenous excitation (u[k] ≡ 0), but set point discontinuities will
be included in the model.

The model of zygostate evolution is (see (1.29) and (1.32))

x[k] =
∑

j

(A j x[k − 1]+ C jw[k])e′jφ[k − 1]− χ�φ[k − 1], (9.1)

φ[k] = �φ[k − 1]+ m[k], (9.2)

where {Ci ; i ∈ S} are nonsingular with

C ′
i Ci = Rχ(i) = Dχ(i)

−1 > 0.

The regime transition probabilities are given by �. In the intersample interval
[(k − 1)T, kT ) the base-state evolves according to the dynamics of the regime at
time (k − 1)T . If there is a modal transition, the base-state will experience the
discontinuity −χ�φ[k − 1].
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The measurement model is essentially that given in (1.17) and (1.54) with a
regime-dependent SNR in the base-state channel (see Chapter 1):

y[k] =
∑

i

Hi e′iφ[k]χ [k]+ n[k], (9.3)

z[k] = Pφ[k]+ η[k], (9.4)

where {n[k]} is a Gaussian white noise sequence with positive covariance F ′F =
Rx = D−1

x . As in Chapter 6, the plant state observation gain is mode dependent.
The development that follows is simpler if we modify the primary filtration. The

composite sequence

{w[0], . . . , w[k],m[0], . . . ,m[k], y[0], . . . , y[k − 1], z[0], . . . , z[k − 1]}

along with the vectors x[0] and φ[0] generates F[k]. The initial plant states are in-
dependent and have the probability distributions x[0]∈N(x̂[0], Pxx [0]), and φ[0]
is distributed according to φ̂[0]. In this construction, the observation filtration,
G[k] = Y[k]∨Z[k], is not contained inF[k] but rather inF[k+1]. The exogenous
processes in (9.1)–(9.4) are F[k]-martingale increments (or F[k − 1]-martingale
increments), and the detailed characteristics of their paths are given in Chapter 1.

In contrast to the moment-based approach used to frame thePME, we will seek an
implementable approximation to the G[k]-conditional distribution of the zygostate.
At time t = kT , suppose the base-state has the G[k]-conditional vector probability
density, p[k] = [pi [k]]:

pi [k](z) dz = P(x[k] ∈ [z, z + dz], φ[k] = ei |G[k]). (9.5)

From p[k], the requisite moments can be obtained directly. We seek a mapping from
{p[k], y[k + 1], z[k + 1]} to p[k + 1]. This mapping can be stated most concisely
when phrased in terms of a set of unnormalized densities, q[k](z) = [qi [k](z)],
derived using a change-of-measure (COM) approach. The resulting algorithm will
be called the COM-estimator.

To many engineers, the COM calculations that follow will lack intuitive appeal,
but they are actually those common in applications. To provide a simple illustration
of the COM technique, let (�,F,P) be a probability space on which � = [0, 1],
F is the Borel field, and P is a probability measure on [0, 1] with density px . On
this space, x =ω is a random variable. If f is a well-behaved function of x , its
expectation is easily computed:

E[ f ] =
∫
�

f (ω) dP(ω) =
∫

[0,1]
f (u)px(u) du. (9.6)
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There is another way of performing this calculation. Let (�,F, P̄) be another
probability space (same sample space and events but a different probability measure,
P̄). Let P̄ be length-measure: The probability of an element of F is its length. The
random variable x = ω is P̄-uniformly distributed on [0, 1] and so the probability
density of x is identically one on [0, 1]. The probability measures on the event
space are different, and the moment properties of x(ω) are different as well. The P-
probability of an event like x ∈ [u, u+ du] is px(u)du whereas the P̄-probability of
this identical event is du: Even though the sample spaces and the random variables
are duplicates, the probabilities of relevant events are different.

The derivative of P with respect to P̄ , denoted *̄, is in this case equal to px :

dP
dP̄ (u) = *̄(u) = px(u).

To distinguish it from P-expectation, denote expectation with respect to P̄ byĒ .
Let G be a sub-σ -field of F . The conditional Bayes’ Theorem [EAM95, Theorem
3.2] relates the operator E to the operator Ē :

E[ f |G] = Ē[ f *̄ |G]

Ē[*̄ |G]
. (9.7)

Equation (9.7) shows that an expectation with respect to P can be performed
as an expectation with respect to a different measure P̄ if the derivative of the
measure is included properly in the calculation. For example, if G is the trivial σ -
field, E[ f ]= Ē[ f *̄]/Ē[*̄]. Since Ē[*̄]= ∫ 1

0 *̄(u) du= 1 and Ē[ f *̄]= Ē[ f px ],
Equations (9.6) and (9.7) are identical.

In this illustrative example, there would be little inclination to use COM for the
calculation, but this is not always so. Return to the hybrid estimation problem. On
the original event space and filtration, (�,F;F[k]), consider a new probability
measure, P̄ . With respect to P̄ , there are several independent, vector-valued, ran-
dom sequences: {w[k]} and {y[k]} are Gaussian white noise sequences (w[k] and
y[k] are N(0, I)); {z[k]} is an independent, identically distributed (iid) sequence
that is uniformly distributed across {e1, . . . , eS}; {m[k]} is a sequence of martingale
increments. This change to P̄ reflects no change for {w[k]} and {m[k]}, but the char-
acter of {y[k]} and {z[k]} is considerably different. Although the processes {y[k]}
and {z[k]}will retain the name “observation processes” even in the new probability
space, they are both P̄–iid sequences and convey little pertinent information.

The G[k]-zygostate estimation problem under P̄ is easy to solve but not partic-
ularly interesting since {y[k]} and {z[k]} are independent of the zygostate. To use
a COM-estimator to compute the P-moments of interest, we must first delineate
the relationship between P̄ and P . Denote the density function of a unit Gaussian
random vector by �(u) = Nu(0, I). For l ∈ {0, 1, . . .}, define a local likelihood
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function

λ̄[l] = S

�(y[l])
z[l]′Pφ[l]|F |−1�

(
F−1

(
y[l]−

∑
i

Hi e′iφ[l](x[l]+ χi )

))
(9.8)

and let *̄[k] be a continuing product of the λ̄[l]:

*̄[k] =
k∏
0

λ̄[l]. (9.9)

Denote the derivative of P with respect to P̄ by *̄. It will first be shown that
the restriction of *̄ to F[k] ∨ G[k] is *̄[k]; that is, P can be found from P̄ by
multiplication by *̄[k](z[k], y[k]):

∂P
∂P̄
∣∣∣∣
F[k]∨G[k]

= λ̄[k](z[k], y[k]). (9.10)

To see this, observe that the probability of an event is the expectation of the indicator
of that event (e.g., P(y[k] ∈ A | F[k]) = E[I (y[k] ∈ A) | F[k]]). Consider the
compound event I (y[k] ≤ t)I (z[k] = ei ):

P(y[k] ≤ t, z[k] = ei |F[k]) = E[I (y[k] ≤ t)I (z[k] = ei ) |F[k]].

To find the probability, the P-expectation of the indicator function I (y[k] ≤ t)
I (z[k] = ei ) must be calculated conditioned on F[k]. It should be far simpler if we
use Ē since the observation processes have such an elementary structure under P̄:

P(y[k] ≤ t, z[k] = ei |F[k]) = Ē[*̄[k]I (y[k] ≤ t)I (z[k] = ei ) |F[k]]

Ē[*̄[k] |F[k]]
.

Many of the factors in *̄[k] are F[k]-adapted (*̄[k − 1] is F[k]-adapted) and
common to numerator and denominator. These factors can be canceled to yield

P (y[k] ≤ t, z[k] = ei |F[k]) = Ē[λ̄[k]I (y[k] ≤ t)I (z[k] = ei ) |F[k]]

Ē[λ̄[k] |F[k]]
.

(9.11)

Look first at the denominator of (9.11):

Ē[λ̄[k] |F[k]] = Ē

[
S

�(y[k])
z[k]′Pφ[k]|F |−1

×�

(
F−1

(
y[k]−

∑
i

Hi e′iφ[k](x[k]+ χi )

))∣∣∣∣∣F[k]

]
.
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But z[k] is P̄–iid and independent of y[k]. So Ē[λ̄[k] |F[k]] can be separated into
factors that depend upon the y[k] and z[k] individually. First,

SĒ[z[k]′Pφ[k] |F[k]] = S(1′φ[k]/S) = 1.

Second,

Ē

[
|F |−1�(F−1(y[k]−∑i Hi e′iφ[k](x[k]+ χi )))

�(y[k])

∣∣∣∣F[k]

]

=
∫
�

(
�

(
F−1

(
u−

∑
i

Hi e′iφ[k](x[k]+χi )

))/
�(u)

)

× |F |−1�(u) du.

Let ζ = F−1(u −∑i Hi e′iφ[k](x[k]+ χi )). The Jacobian of the transformation is
|F |. Substituting |F |dζ = du we obtain

Ē

[
|F |−1�(F−1(y[k]−∑i Hi e′iφ[k](x[k]+ χi )))

Φ(y[k])

∣∣∣∣F[k]

]

=
∫
�
�(ζ ) dζ = 1

and the value of Ē[λ̄[k] |F[k]] is one as well:

Ē[λ̄[k] |F[k]] = 1. (9.12)

With the denominator equal to one, only Ē[λ̄[k]I (y[k] ≤ t)I (z[k] = ei ) |F[k]]
need be evaluated:

P(y[k] ≤ t, z[k] = ei |F[k]) = Ē[λ̄[k]I (y[k] ≤ t)I (z[k] = ei ) |F[k]].

Again, separate the factors involving y[k] from those involving z[k]. First, for the
modal-state measurements, we get

SĒ[z[k]′Pφ[k]I (z[k] = ei ) |F[k]] = (Pφ[k])i

or

P(z[k] = ei |F[k]) = (Pφ[k])i . (9.13)

Second, for the base-state measurements we have

P(y[k] ≤ t |F[k])

= Ē

[
I (y[k] ≤ t)|F |−1�(F−1(y[k]−∑i Hi e′iφ[k](x[k]+ χi )))

�(y[k])

∣∣∣∣F[k]

]
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=
∫
�

I (u ≤ t)
�
(
F−1(u −∑i Hi e′iφ[k](x[k]+ χi )

))
�(u)

|F |−1�(u) du

=
∫
�

I

(
Fζ +

∑
i

Hi e′iφ[k](x[k]+ χi ) ≤ t

)
�(ζ) dζ

So y[k] is an N(
∑

i Hi e′iφ[k](x[k] + χi ), Rx) random variable under P , and the
P-observation model is that given in (9.3) and (9.4).

Suppose f is a scalar-valued function of the base-state. As before, its expectation
could be computed using either P or P̄:

E[e′iφ[k + 1] f (x[k + 1]) |G[k + 1]]

= Ē[e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]]

Ē[*̄[k + 1] |G[k + 1]]
. (9.14)

The denominator has nothing to do with f and is simply a normalizing factor. The
numerator, Ē[e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]], will be thought of as the
G[k + 1]-conditional expectation of f (x[k + 1]) with respect to an unnormalized
G[k + 1]-conditional probability density, qi [k + 1](x[k + 1]):

Ē[e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]] =
∫
�

f (z)qi [k + 1](z)dz.

(9.15)

If the {qi [k + 1]; i ∈ S} were known, the joint density × mass function of the
zygostate would be

pi [k + 1](z) = qi [k + 1](z)∑
j
∫
� q j [k + 1](u)du

, (9.16)

from which x̂[k + 1] and φ̂[k + 1] along with higher moments can be calculated.
To find {qi [k + 1](z); i ∈ S}, expand (9.15) by replacing φ[k + 1], *̄[k + 1],

and x[k + 1] with their values. This yields

Ē[e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]]

= Ē

[
e′i (�φ[k]+ m[k + 1])*̄[k]z[k + 1]′Pei |F |−1

×�(F−1(y[k + 1]− Hi (x[k + 1]+ χei )))
S

�(y[k + 1])

× f

(∑
j

(A j x[k]+ C jw[k+ 1])e′jφ[k]− χ(ei −φ[k])

)∣∣∣∣∣G[k+ 1]

]
.

(9.17)
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It is true that
∑

j φ[k]′e j ≡ 1. Substituting this into (9.17), we obtain

Ē
[
e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]

]
= Ē

[∑
j

(φ[k]′e j )(e′i�e j )*̄[k]z[k + 1]′Pei |F |−1

×�(F−1(y[k + 1]− Hi (x[k + 1]+ χei )))

× S

�(y[k + 1])
f (A j x[k]+ C jw[k + 1]− χ(ei − e j ))

∣∣∣∣G[k + 1]

]
.

Under P̄ , {G[k]} is uninformative with respect to the zygostate. Since an unnormal-
ized distribution is sought, factors common to all regimes can and will be ignored
in what follows:

Ē[e′iφ[k + 1]*̄[k + 1] f (x[k + 1]) |G[k + 1]]

=
∫
�

∑
j

�i j z[k + 1]′P.i�(F−1(y[k + 1]

− Hi (A jζ + C jw − χ(ei − e j )+ χei )))

× f (A jζ + C jw − χ(ei − e j ))q
j [k](ζ )�(w) dζ dw.

To simplify this, make the change of variable z = A jζ + C jw − χi + χ j . Then
dζ dw = |C j |−1dζdz and∫

�

∑
j

�i j z[k + 1]′P.i |C j |−1�(F−1(y[k + 1]− Hi (z + χi )))

× f (z)q j [k](ζ )�
(
C−1

j (z − A jζ + χi − χ j )
)
dζ dz

=
∫
�

f (z)qi [k + 1](z) dz.

Hence

COM-estimator

qi [k + 1](z)=
∑

j

�i j z[k + 1]′P.i |C j |−1�(F−1(y[k + 1]

−Hi (z + χi )))

∫
�
�
(
C−1

j (z − A jζ + χi − χ j )
)

× q j [k](ζ ) dζ. (9.18)
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Equation (9.18) is the recurrence formula that delineates the COM-estimator. Vari-
ants on (9.18) have been derived for kindred plant representations:

• If χ = 0, see [EE99, Equation (4)].
• If χ = 0 and the noise in {z[k]} is Gaussian, see [EDS96, Equation (8)].
• If χ= 0, the noise in {z[k]} is Gaussian, and g[k] = y[k] + z[k], see

[EvdH99, Equation (10)].
Unfortunately, (9.18) is not an algorithm of the form we seek – although recursive,
it is infinite dimensional.

To approximate (9.18) with a finite-dimensional recurrence, suppose q[k] is an
unnormalized Gaussian sum. The number of terms in the sum is limited only by
the computational complexity permitted in the application. We will assume that N
terms will suffice in every regime:

q j [k](ζ ) =
N∑

l=1

α
j
l [k]

∣∣D j
l [k]

∣∣ 1
2 exp− 1

2

(
ζ − m j

l [k]
)′D j

l [k]
(
ζ − m j

l [k]
)
.

(9.19)

In (9.19), the unnormalized G[k]-condition probability of the event

{x[k] ∈ [ζ, ζ + dζ ], φ[k] = e j }

is given under P by a sum of N Gaussian pattern functions,

{
Nζ

(
m j

l [k], P j
l [k]

); l ∈ N
}

with means m j
l [k] and positive covariances P j

l [k] = D j
l [k]−1. In this approxima-

tion, m j
l [k] translates the lth pattern function, D j

l [k] adjusts its shape, and N circum-
scribes the span of the sum. The pattern functions are weighted by {α j

l [k]; l ∈ N}.
All of the coefficients are G[k]-adapted. There are N S elements in q[k] though
many could be zero.

It is shown in Appendix 2 that there is a recurrence formula for the coefficients,
{α j

l [k],m j
l [k], P j

l [k]; j ∈ S, l ∈ N}. The recurrence can be most concisely stated
in the mixed covariance-information form used to delineate the IMM:

base-state recurrence

Extrapolation:

mi
l [k + 1]− = Ai m

i
l [k]; i ∈ S, l ∈ N; (9.20)

Pi
l [k + 1]− = Ai Pi

l [k]A′i + Rχ(i); i ∈ S, l ∈ N. (9.21)
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Update:

di [k + 1](l; j)+ = d j
l [k + 1]− + H ′

i Dx(y[k + 1]− Hiχi )

− D j
l [k + 1]−(χi − χ j ); i, j ∈ S, l ∈ N; (9.22)

Di [k + 1](l; j)+ = D j
l [k + 1]− + H ′

i Dx Hi ; i, j ∈ S, l ∈ N, (9.23)

where

Pi [k + 1](l; j)+ = (Di [k + 1](l; j)+)−1

and

mi [k + 1](l; j)+ = Pi [k + 1](l; j)+di [k + 1](l; j)+.

As in the path-length-one MM approaches, there are S parallel Kalman filter extrap-
olations. But in the COM-estimator, each filter extrapolates N initial conditions.
The PL1-MM filters extrapolate only one.

The update equations are more complex than those appearing in the MM filters.
At an update, the possibility of a regime transition cannot be ignored: In the non-
communicating PL1-MM filter, modal transitions are superfluous, and in the IMM,
the transitions enter into the mixing step. In either multiple model algorithm (after
adjusting for the set point influence on {y[k]}), the update equation would read

�di [k + 1]+ = H ′
i Dx y[k + 1]; �Di [k + 1]+ = H ′

i Dx Hi ; i ∈ S.

The update in the information matrix of the COM-estimator is close to that of the
Kalman filter. There is a different indexing, but the increment in the information
matrix is the same (H ′

i Dx Hi ) from every (l, j).
The update of the conditional mean, mi [k + 1](l; j)+, involves more bookkeep-

ing. As with the information matrix, modal mixing in theCOM-estimator takes place
even in the absence of set point discontinuities: Even if χ= 0, di [k + 1](l; j)+ =
d j

l [k + 1]− + H ′
i Dx y[k + 1]. For mode ei , the array of means, {mi [k + 1](l; j)+},

has NS columns and each is identified with a particular modal transition. If ei �→ ei ,
�di

l [k + 1]+ = H ′
i Dx(y[k + 1]− Hiχi ), a simple translation. If {φ[k]} makes an

e j �→ ei transition, the base-state observation is referenced to the current modal-
state (y[k+1]−Hiχi ), and a base-state discontinuity, (−χi +χ j ), must be included
in the mean.

The weightings in di [k + 1](l; j)+ balance measurement fidelity and the shape
of the pattern functions. The size of jump

di [k + 1](l; j)+ − d j
l [k + 1]−

in the (l; j)-th subfilter will be increased if the measurement noise is small and if
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y[k + 1] differs from Hiχi . Similarly, the set point offset (χ j − χi ) is important
when the probability of the lth pattern function is concentrated in a small region
(i.e., when D j

l [k + 1]− is big). Suppose the modal measurement is quite good and
an e j �→ ei transition occurs at time t = (k + 1)T . In the absence of the base-state
measurement, the extrapolation in the base-state mean should be

mi [k + 1](l; j)+ ≈ m j
l [k + 1]− + χ j − χi ;

the mean translates by the amount of the base-state discontinuity. The size of the
difference, m j

l [k+1]+−(m j
l [k+1]−+χ j−χi ), is a coarse measure of the influence

of y[k + 1] since this difference is that between the corrected and uncorrected
extrapolation.

Modal mixing is isolated in the IMM but is distributed in the COM-estimator. It
appears in the filter update in (9.22) and (9.23) and also in the weighting coefficients,
{αi [k + 1](l; j)+; i, j ∈ S, l ∈ N}. The equation is

modal mixing

αi [k + 1](l; j)+ =α
j
l [k]�i j z[k + 1]′P.i

∣∣D j
l [k]

(
D j

l [k]

+ A′j Dχ( j)A j
)−1 Pi [k + 1](l; j)

∣∣ 1
2

× exp−1

2
{mi [k + 1](l; j)′Di [k + 1](l; j)

×mi [k + 1](l; j)− (m j
l [k + 1]−

+χ j − χi
)′D j

l [k + 1]−
(
m j

l [k + 1]− + χ j − χi
)

+ (y[k + 1]− Hiχi )
′Dx(y[k+ 1]− Hiχi )}. (9.24)

The weighting coefficientαi [k+1](l; j)+ is proportional to its predecessor (α j
l [k]),

proportional to the probability of an e j �→ ei transition (�i j ), and proportional to
the probability that the modal observation was generated from φ[k + 1] = ei

(z[k + 1]′P.i ). Similar factors appear in the IMM and in the image-enhanced IMM
[EE99, LDB98].

In the IMM, the update of the modal probabilities depends exclusively upon the
behavior of the subfilter residuals, r j [k+1] = y[k+1]−H x̂ j [k+1]−. The smaller
the residuals in a particular subfilter are, weighted by the associated information
matrix, the more likely the associated mode is thought to be. The unnormalized
modal update has the form

q[k] = φ̂[k]− ∗ [|Di [k + 1]−| exp
{
−1

2
r i [k + 1]′Di [k + 1]−r i [k + 1]

}
.

(9.25)
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The coefficients in (9.24) are responsive, not to the residuals themselves, but instead
to the effect these residuals have on the update. The weight αi [k + 1](l; j)+ is
generated by a continuing exponential product of the quadratic differences of the
base-state mean before and after a base-state measurement (a difference of quadratic
forms, not a quadratic form of the differences). With coefficients thus determined,
the unnormalized G[k + 1]-conditional distribution of the zygostate can be written
immediately:

qi [k + 1]+ =
∑
j,l

αi [k + 1](l; j)+N(mi [k + 1](l; j)+, Pi [k + 1](l; j)+).

(9.26)

From (9.26), the various moments of interest can be computed, that is,

φ̂[k + 1] =
[∑

j,l

αi [k + 1]+(l; j)

/∑
i, j,l

αi [k + 1]+(l; j)

]
(9.27)

and

x̂[k + 1] =
∑
i, j,l

αi [k + 1]+(l; j)mi [k + 1](l; j)+
/∑

i, j,l

αi [k + 1]+(l; j).

(9.28)

Unfortunately, there are not N terms in (9.26) but N S. To satisfy the complexity
constraint, pruning and/or merging must be used to reduce the number of terms.
Computational experience with (9.26) is wanting. For now we will simply keep
the largest term from each modal transition hypothesis. For all i, j ∈ S let l(i, j)∗

satisfy:

αi [k + 1](l(i, j)∗; j)+ ≥ αi [k + 1](l; j)+.

(This is the maximizing index and will be assumed to be unique.) The next iteration
of the COM-estimator begins with a set of S terms (N = S):

updated distribution

qi [k + 1]=
∑

j

αi [k + 1](l(i, j)∗; j)+

× N(mi [k + 1](l(i, j)∗; j)+, Pi [k + 1](l(i, j)∗; j)+).
(9.29)

The COM-estimator is inherently more complex than the path-length-one
MM filter or the IMM. The underlying Gaussian sum approximation to the
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G[k]-distribution of the zygostate requires S times as many terms as do these MM fil-
ters. The use of pruning instead of merging can make the estimates of the base-states
less robust than those found in the IMM. However, the approximation preserves
the identity of the modal state more clearly. In applications in which the regime
probabilities are important, the COM-estimator is a useful alternative to other MM
filters.

9.2 Gaussian Minimum Shift Keying

To illustrate the utility of the COM approach, consider an unconventional appli-
cation in which we seek to determine the modal-state instead of the base-state.
The block diagram of a mobile communication link is shown in Figure 9.1. A
source generates a primitive data sequence, {ι[k]}, that is symmetric, iid, and bipo-
lar: ι[k] ∈ {−1, 1}. There is a companion time-continuous process {ιt}, which
is constant on intervals, t ∈ [kT, (k + 1)T ), with ιkT = ι[k]. The binary process is
recast by a transmit filter to create the baseband information signal. This signal is
modulated, transmitted, and then demodulated to yield the baseband signal at the
receiver. This latter is sampled to generate an observation sequence {y[k]} from
which {ι[k]} is reconstructed.

An advantage accruing to a properly chosen transmit filter is that the radio fre-
quency (RF) spectrum required for transmission is significantly reduced. Denote
the impulse response of the transmit filter by {gt}. The baseband signal at the trans-
mitter, { ft}, is the convolution of {gt} and {ιt}. A popular (noncausal) transmit filter
used in Gaussian minimum shift keying (GMSK) mobile applications is selected
from the parametric family

gt = (α/
√
π)ε−(αt)2; t ∈ (−∞,∞).

COMMUNICATION
CHANNEL

RF DOWN
CONVERTER /

RECEIVE FILTER

MODULATION
AT RADIO

FREQUENCY (RF)

INFORMATION
PROCESSOR

DECODER / DETECTOR

DIGITAL BASEBAND
TRANSMIT FILTER /

PULSE SHAPING

INFORMATION SOURCE
DIGITAL SYMBOLS

{I0,I1,I2,...}

INFORMATION SINK,
ESTIMATED DIGITAL
SYMBOLS {I0,I1,I2,...}

Figure 9.1. A wireless communication link.
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Figure 9.2. Impulse response of the transmit filter for β = 0.5 .

The index for the transmit filter is more often given in terms of β, the bandwidth
of the filter relative to the bit rate: α = π(2 ln 2)βT . Figure 9.2 shows a centered
unit pulse of length T along with the output of the transmit filter, {Iβ(t);β = 0.5}.
(The unit pulse corresponds to the output of a transmit filter with β =∞.) The
(normalized) power spectral density of the baseband GMSK(β = 0.5) signal is
contrasted in Figure 9.3 with direct transmission (GMSK(β =∞,) also called

-3 -2 -1 0 1 2 3
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NORMALIZED FREQUENCY

GMSK

BPSK

Figure 9.3. Power spectral density of the transmitted signal: β = 0.5 and β = ∞.
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binary phase shift keying (BPSK)). The reduction in spectral bandwidth is apparent
[Pro95, MH81].

In the basic GMSK link, the baseband signal is given by

ft =
∞∑

i=−∞
ιi Iβ(t − iT ). (9.30)

At any time t , the baseband signal is given as an infinite and noncausal weighted
sum of the data symbols. In the temporal bin identified with the i th symbol, ft

is composed of a term related to the current symbol, ιi Iβ(t − iT ), along with a
contribution from all of the other symbols,

∑
j �=i ι j Iβ(t − jT ). This out-of-bin

aggregate, called intersymbol interference (ISI), contaminates the baseband signal
and makes interpreting it more difficult. Fortunately, as Figure 9.2 shows clearly,
when β = 0.5, the influence of the interfering symbols for |i − j | ≥ 1 is so small
that they can be safely ignored. So for t ∈ [kT, (k + 1)T ),

ft ≈
k+1∑

i=k−1

ιi Iβ(t − (k − i)T ). (9.31)

Although the out-of-bin symbols are viewed as interference in elementary ana-
lyses, they can be interpreted as part of the signal if the modal state space is properly
constructed. Order the combinations of (ιt+T , ιt , ιt−T ) in the natural way beginning
with (−1,−1,−1), and let φt = ei if (ιt+T , ιt , ιt−T ) takes on its i th value. Equation
(9.31) can be written

ft ≈ Htφt . (9.32)

In this construction, the modal-state is eight dimensional for β = 0.5 even though
the symbol dimension is two. Nevertheless, defining φt in this way converts the
energy in the out-of-bin symbols into part of the observation.

Figure 9.4 displays the set of eight possible baseband signals over two symbol
periods as the modal-state varies over its range; Figure 9.4 is called the eye chart.
Suppose the effect of the channel is to add white Gaussian noise and the baseband
signal at the receiver is sampled at the center of the temporal bin once every period.
The observation is

y[k] = f [k]+ n[k]. (9.33)

There are various ways in which the original data sequence could be reconstructed
at the receiver. The simplest is if y[k] is positive, ι[k] = 1 is declared with ι[k] = −1
otherwise. This detector uses the maximum value of { ft}, and the untoward effects
of additive channel noise should be reduced. Unfortunately, this detector ignores
ISI and it is sensitive to the timing of the sampler.
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Figure 9.4. The eye chart showing ISI for β = 0.5.

In narrowband mobile communication systems, the transmission protocol is more
complex. Instead of { ft}, a signal equivalent to the integral of { ft} is transmitted.
Integration increases the smoothness of the baseband process but creates more tem-
poral overlap. In continuous phase modulation (CPM) systems, the data sequence
is expressed within a phase process {θt} given by (e.g., [Kor90, Equation (47)])

θt = 2π
∞∑

i=−∞
hi ιi p(t − iT ), (9.34)

where θt is to be interpreted modulo 2π , and hi is the modulation index for the
i th symbol (hi is assumed identically 1/2 henceforth). For GMSK, the phase-
response-function, {pt}, is a scaled integral of Iβ(t) (see [YMF88, Equation (7)]).
The variation in p(t) is spread over the temporal bins that support Iβ(t), and the
scaling is such that p(−∞) = 0 and p(∞) = 1/2. Again, conserving bandwidth
with small values of β leads to significant intersymbol interference.

Mobile channels are subject to deep fades and sudden phase changes. Conven-
tional methods of channel equalization have not proven to be adequate for signal
reconstruction. Although the support for the variation of p(t) extends across mul-
tiple temporal bins, for a specified β there is a finite – and usually small – integer L
such that p(τ ) ≈ 1/2 for τ ≥ LT and p(τ ) ≈ 0 for τ ≤ −LT . Neglecting small
terms, this permits us to write θt as (see [YMF88, Table 1] or [SW84])

θt = 1

2
π

k−L−1∑
i=−∞

ιi + π

L∑
i=−L

ιk+i p(t − (k + i)T ) (9.35)

for times in the kth temporal bin. Note that there are 2L interfering symbols.
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Figure 9.5. Partial response CPM with memory.

Equation (9.35) can be displayed pictorially as in Figure 9.5 (shown for L = 1,
which will suffice for β = 0.5). The first term in (9.35) is the memory-state shown
to the right of the figure as a delay and an accumulator. The status of this term can
be represented by a unit vector ρt in R4 (e.g., if 1

2π
∑k−L−1

i=−∞ ιi = 0, then ρt = e1

and so on). The second term in (9.35) is displayed as the shift register in the figure
and its status can be represented by a 22L+1-dimension unit vector, ζt ; for example,
if arrayed in increasing order, when all relevant {ι[k]} are −1,

πh
L∑

i=−L

ιk+i p(t − (k + i)T ) = −πh
L∑

i=−L

p(t − (k + i)T )

and ζt = e1. The modal-state at any time is simply φt = ρt ⊗ ζt . The unit vectors
in the modal-state space are also called the phase-states.

As constructed, the phase-state process is Markovian and can be particularized
using conventional procedures:φ[k] = �φ[k−1]+m[k],where� is the transition
matrix and {m[k]} is a martingale difference. For future reference, observe that
only two elements of �i. are nonzero for each i – any phase-state has precisely
two progenitors. Note also that the state space of the phase process is of higher
dimension than is the symbol space to account for the presence of ISI and memory:
For L = 1 (β = 0.5), the dimension of the state space of the phase process is thirty-
two whereas that of the symbol process is two.

Detection is easy if a good approximation to {φ[k]} exists. In the CPM system
the information is conveyed in the integral (or sum) of the symbol process. Because
of its form, �ρ[k] = ±π/2, depending on whether ιk−L−1 is ±1. Hence, faithful
identification of the data symbol is achieved by differential detection:

ι̂k−L−1 = sgn(�ρ[k])

[SW83]. There is an intrinsic delay of (L + 1)T using differential detection, but
this is of no consequence.
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To create an accurate estimate of {φ[k]} for use in a differential detector, a
careful description of the received signal at baseband is required. The raw signal at
the receiver is

st = At sin(2π fct + θt + ϕt)+ nt , (9.36)

where At is a time-varying amplitude, fc is the carrier frequency, θt is the phase
generated by the transmitter, ϕt is the time-varying phase introduced by the channel,
and nt is additive, white Gaussian noise. After carrier removal and filtering, the
baseband observation process (commonly called the IQ process) is created:

yt =
[

It

Qt

]
= Kt

[
cos(θt) cos(ϕt)− sin(θt) sin(ϕt)

cos(θt) sin(ϕt)+ sin(θt) cos(ϕt)

]
+
[

n1

n2

]
, (9.37)

where {Kt , ϕt} is the channel gain-phase process, and {n1} and {n2} are noise
processes.

The channel gain-phase vector delineates the influence of the transmission link,
and we will refer to it as the channel state. The channel state has continuous,
though volatile, sample paths and will be identified with the plant state of the hybrid
model. The phase-state sequence has a finite state space and will be identified with
the modal-state of the hybrid model. In a twist on the hybrid estimation problem,
primary interest lies in estimating the modal-state instead of the plant state.

Despite the name, the plant state dynamics do not lend themselves to modeling
as in (1.1). Researchers have found it easier to describe the channel characteristics
in an altered state space. Let {Xt} be a two-dimensional, stationary, Gaussian ran-
dom process with independent and identically distributed components. The power
spectral density (PSD) common to both components of {Xt} has the peculiar form
given in [ACW73, Equation (1)]:

�X ( f ) =


C

[1− ( f/ fD)2]
1
2

if | f | ≤ fD,

0 otherwise,

(9.38)

where C is a scaling coefficient and fD is the Doppler shift corresponding to the
vehicle speed and carrier wavelength. In these terms, {yt} can be expressed as

yt =
[

It

Qt

]
=
[

cos(θt) − sin(θt)

cos(θt) sin(θt)

] [
X1

X2

]
+
[

n1

n2

]
. (9.39)

The conventional approach to system modeling would translate the PSD in (9.38)
into an LGM model with the state variables of the shaping filter acting as the base-
state. The form of the PSD precludes doing this. Although the PSD of {Xt} can
be duplicated to any degree of accuracy using an LGM model, the more accurate
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the approximation (the higher the order), the more complex the resulting detection
algorithm will be. Let us render {Xt} in terms of a pair of uncoupled, continuous
shaping filters; both are lightly damped (ξ = 0.05), second-order transfer functions
with resonant frequency fD . The state (the base-state), xt , of the composite channel
model is a 4-vector with component ordering: X1 and its rate; respectively, X2 and
its rate. The time-discrete model for the base-state process is found by sampling
the two uncoupled time-continuous filters:

x[k + 1] = Ax[k]+ w[k + 1], (9.40)

where {w[k]} is a Gaussian white noise sequence with covariance Rχ > 0.
The baseband observation at time kT can be written concisely as

y[k] =
∑

i

Hi e′iφ[k]x[k]+ n[k], (9.41)

where Hi is found by integrating (9.39) and (9.41), and {n[k]} is a white-noise
Gaussian sequence with covariance Rx > 0. There is no separate modal measure-
ment in this application: Y[k] ≡ G[k].

The COM-algorithm first generates { φ̂[k]} and then uses a one-bit differential
detector to create an estimate of {ιk−L−1}. Begin with q[k], a Gaussian sum ap-
proximation to the unnormalized Y[k]-density of the zygostate. Pruning retains
one term from each permissible modal transition. The COM-estimator is initialized
with the family{

α
j
l [k],m j

l [k], D j
l [k]; j, l ∈ S

}
,

but because of the nature of �, all but two of the αi [k + 1]( j; l) vanish for every
i ∈ S; thus the actual dimension of the algorithm is 2S, not S2.

The COM-algorithm is simplified considerably when χ = 0:

base-state recurrence

Extrapolation:

mi
l [k + 1]− = Ami

l [k]; i, l ∈ S, (9.42)

Pi
l [k + 1]− = APi

l [k]A′ + Rχ ; i, l ∈ S. (9.43)

Update:

�di
l [k + 1]+ = H ′

i Dx y[k + 1]; i, l ∈ S, (9.44)

�Di
l [k + 1]+ = H ′

i Dx Hi ; i, l ∈ S. (9.45)
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The weighting coefficients can be simplified too. There are no modal observations
and factors common across modes can be neglected. For i, j, l ∈ S:

αi [k + 1](l; j)+ = α
j
l [k]�i j

∣∣D j
l [k]

(
D j

l [k]

+ A′Dχ A
)−1 Pi [k + 1](l; j)

∣∣ 1
2

× exp−1

2
�
(
mi

l [k + 1]′Di
l [k + 1]mi

l [k + 1]
)
.

From φ̂[k], ρ̂[k] can be produced by direct enumeration. Signal detection is ac-
complished using a differential rule:

Let ι = arg max(ρ̂[k])i .

If |ρ̂ι[k]− ρ̂ι−1[k]| ≤ |ρ̂ι[k]− ρ̂ι+1[k]|
then ι̂k−L−1 = 1,

otherwise ι̂k−L−1 = −1.

Although not required for detection, the Y[k]-conditional mean of x[k] can be
found by summing on i and suitably normalizing the result. From x̂[k] estimates
of the channel coefficients can be produced by inverting the map (Kt , ϕt) ⇒ Xt .

Because of their formal construction, these estimates of channel gain and phase
should not be confused with the associated Yt -conditional means. Recall that
X̂1[k]= e′1 x̂[k] and X̂2[k]= e′3 x̂[k]. Plausible estimates of channel gain and phase
are

channel amplitude:

K̂ [k] = (x̂[k]′(E1 + E3)x̂[k])
1
2 , (9.46)

channel phase:

ϕ̂[k] = tan−1(e′3 x̂[k]/e′1 x̂[k]). (9.47)

The COM-estimator does provide the information required for adaptive channel
estimation [Ses94], but it differs from “the most common approach (to blind equal-
ization which filters) the output by an estimate of the inverse channel followed by
some decision device” [GW95].

Pruning is required because, for every hypothesis ei in the state space of φ[k],
there are 2S terms in the Gaussian sum; for example, in αi [k + 1]+(l; j), ( j, l)
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Table 9.1. The mobile
environment.

Carrier frequency 836 MHz
Symbol rate 8 kHz
Doppler shift 38.7 Hz
Vehicle speed 50 km/h

runs over 2S. The pruning procedure selects the subhypothesis with the largest
weight from each of the possible progenitors. This is a very simple rule and can be
made more sophisticated if the sample rate is sufficiently slow. The COM-estimator
avoids the geometric growth in dynamic hypotheses that bedevils other approaches
involving blind equalization (see [GW95], [LM90, p. 778], and [Ilt90, p. 199]).

9.3 An Example

To be more concrete, consider the mobile environment described in Table 9.1
[Ken96]. Figures 9.6 and 9.7 show a sample path of the channel gain and phase
over a range of 5,000 symbol times. On this interval, the channel gain decreases by
more than 20 dB with a similar variation in the phase.

Let us contrast the performance of three algorithms:
BPSK: When the transmit filter has a unity transfer function, �θt is 0 or π

according as ι is±1 (differentially encoded, binary-phase-shift-keying).
There is no ISI because the influence of the kth symbol is confined to the

Figure 9.6. Channel gain; fading channel v = 50 km/hr, fc = 836 MHz.
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Figure 9.7. Channel phase; fading channel v = 50 km/hr, fc = 836 MHz.

kth temporal bin. There is considerable spectral spreading as indicated
in Figure 9.3. The signal will be coherently detected after passing over
a fading channel with perfect knowledge of channel phase.

GMSK: This is the basic GMSK link with a measured channel state (x̂t =
xt ) and β = 0.5 [KSE94]. The algorithm is linear and of low dimension.

COM: This is the COM-estimator given in (9.42)–(9.45) for the fading
channel and β = 0.5.

The performance of a detection algorithm is commonly phrased in terms of the
symbol error rate, Pe, as a function of the signal-to-noise ratio for a single symbol
time, Eb/No in dB. If there are no bandwidth constraints,BPSK is the best algorithm
for this application. The channel is known and ISI is avoided. The performance of
BPSK is computed and displayed in [Pro95]. The other two estimators are more
complex, and their performance must be found by simulation. In the development
leading to (9.42)–(9.45), {Xt} is modeled with a pair of uncoupled, continuous
LGM shaping filters. This reduces the complexity of the COM-estimator, but it
is a coarse approximation to �X ( f ). In the simulation, a more realistic channel
model (closer to (9.38)) is used to create sample paths of the channel coefficients:
{Xt} is generated from an uncoupled pair of sixth-order Butterworth filters with
a resonant second-order section. Although this PSD does not have finite support,
a comparison with �X ( f ) demonstrates that this twelfth-order model provides a
reasonable channel representation.

Consider the performance of the decoding algorithms in the mobile environment.
GMSK was derived assuming the channel state is measured and uses β = 0.5 to
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Figure 9.8. BPSK and GMSK in the fading channel.

reduce the transmission bandwidth. The lower two curves in Figure 9.8 show the
bit error rate as a function of channel SNR (Eb/No) for the mobile channel. The
performance of GMSK is essentially indistinguishable from that of BPSK despite
the considerable intersymbol interference in GMSK and the spectral spreading in
BPSK. This shows that when the channel state is known, the performance degra-
dation is minimal even when the bandwidth is severely constrained.

When GMSK is used in a channel with random state, its error rate degrades to an
unacceptable degree. The top curve in Figure 9.8, labeled “fading channel,” shows
what happens when GMSK measures the actual channel fade but wrongly sets the
channel phase to zero. The channel phase is volatile (see Figure 9.7), and when
GMSK ignores the changing phase it samples the eye curve at a less advantageous
point. Although Pe < 0.5, it does not decrease significantly with SNR.
COM integrates the channel dynamics into its description of the operating envi-

ronment, though not very meticulously since it uses an uncoupled pair of second-
order filters for the channel processes. Figure 9.9 contrasts the performance of
COM with BPSK in the severe fading created by a mobile platform. TheCOM-
estimator knows neither the channel gain nor the phase. (This is an advantage given
to BPSK.) Nor does it use the extended transmission band required by BPSK.
Nevertheless, COM is seen to have a performance comparable to BPSK with a
much lower sensitivity to channel fades than found in GMSK. (Pe degrades by a
factor of less than two for Eb/No = 15.)

Although detection usingCOM requires no explicit channel identification, it is in-
teresting to see how well it accomplishes this ancillary task. This is done in [Ken96]
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Figure 9.9. BPSK and COM in the fading channel.

using the estimate of channel gain as computed in (9.46) and (9.47). Despite the fact
that COM uses only a simplified model in its development, the channel estimates
are surprisingly good. At a low SNR (Eb/N0 = 10), the amplitude estimate lags
the true amplitude and tends to overshoot to some degree. The phase estimate has
intervals of sizable error. Except at a discrete set of transition times, these errors are
essentially of magnitude kπ and are of little consequence in differential detection.

In this mobile channel, COM provides a good estimate of the signal symbol
sequence. Even though the channel state model is very coarse, the estimator is able
to track the true channel state closely. Although not discussed here, the algorithm is
simple enough that multiple samples/symbol could be processed. Other studies (not
shown) indicate that the performance of the COM-algorithm does not significantly
degrade when the spectral specifications on the channel are made tighter (e.g.,
β = 0.25).



Appendix 1
PME Derivation Details

A1.1 Introduction

In this appendix, the PME algorithm will be developed. Let (�,F,P) be a proba-
bility space and let {Ft} be a right-continuous filtration that generatesF :σ {∨tFt} =
F . There are several exogenous processes defined on this space, all right-continuous
and Ft -adapted. The comprehensive state is expressible in terms of these primary
processes, and it has a decomposition into the base-state, xt , and the modal-state,
φt . The zygostate of the hybrid system, (xt , φt), is associated with a similarly par-
titioned observation, vec(yt , zt) = gt .

There are several subfiltrations on {Ft} that are important in what follows.
The observation {gt} generates {Gt}. With perfect modal-state measurement (i.e.,
gt = vec(yt , φt)), we indicate the gt -generated filtration by {Gφ

t }. With no modal
measurements (i.e., gt = yt), we would have {Gt} = {Y t}.

Associated with an observation process, there is an innovations process. Of most
interest here is the Gt -innovations process, and this can be partitioned compatibly
with the observation: νt = vec(νx , νφ). It will be assumed that {νt} also generates
{Gt}. We seek a causal map from {νt} to {x̂t} and {φ̂t}. This is a difficult construction
because of the nonlinear and discontinuous system dynamics.

The approximation used in developing thePME derives from the premise that the
proximate source of information about φt is conveyed by {zt}: If {ζt} is a process for
which the Gφ

t -expectation is independent of {yt}, the contribution of dνx to d ζ̂t is
negligible as compared to that of dνφ. This does not mean, however, that the PME

ignores the information content in {yt}: We are not equating the Gt -expectation of
ζt with the Zt -expectation. Rather, we are saying that the coincident contribution
of the base-state measurement to d ζ̂t is comparatively small. This hypothesis is not
always appropriate, but when it is, an implementable algorithm can be developed.

The average rate of modal measurements is λ/s. These observations are dis-
tributed across the S modal categories. TheFt -vector observation rate isλt = λPφt

221
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(or λt = h′φt where h = λP′), the i th component of which is the probability that
the observation is classified in the i th modal bin. To develop the PME note that the
observations can be written in two ways:

dyt = H(xt + χφ) dt + dnx and dzt = h′φ dt + dnφ, (A1.1)

where the observation noise, {vec(nx , nφ)}, is an Ft -martingale. Alternatively,

dyt = H(x̂t + χφ̂t) dt + dνx and dzt = h′φ̂t dt + dνφ, (A1.2)

where the innovations process, {vec(νx , νφ)}, is a Gt -martingale.
The processes {νx} and {nx} are continuous, and their predictable quadratic vari-

ation is simply written

d〈nx , nx ;Ft 〉t = d〈νx , νx ;Gt 〉t = Rx dt. (A1.3)

The optional quadratic variation of both processes is also Rx t, and it will be sup-
posed that the system is such that Rx > 0.

The modal noise process, {nφ}, is discontinuous, and its predictable quadratic
variation is random:

d〈nφ, nφ;Ft 〉t = E[dz dz′ |Ft ] = diag(λt) dt,

d〈nφ, nφ;Gt 〉t = diag(λ̂t) dt = Rφ dt,
(A1.4)

where (A1.4) is taken to be the definition of Rφ . The system will be assumed to be
such that each component ofλt is positive, and consequently, Rφ > 0. The optional
quadratic variation requires the additional accumulation of the jumps {�nφ�n′φ}.

The modal observations enter the PME in a peculiar manner. Let {ϑt} be a
process that is constant between modal observations and with increments �ϑt =
h(λ̂

−1
t ∗�zt), where λ̂

−1
t is understood componentwise.

In what follows, a special notation is useful to make the PME more intuitive.
Recall that xt (respectively φt ) is the state with Gt -mean and error given by x̂t and
x̃t (respectively φ̂t and φ̃t ). The second moments of these variables are Rxφ(t) =
E[xtφ

′
t |Gt ] and Pxφ(t) = E[x̃tφ

′
t |Gt ], with similar definitions for Pxx(t), Rxx(t),

etc. Let us extend this notational convention to third moments as follows. Consider
the two vectors xt , φt and the scalar φi . Let us display third moments as

Rxφφi (t) = E[xtφ
′
tφi |Gt ],

Pxφφi (t) = E[x̃t φ̃
′
t φ̃i |Gt ],

with similar definitions for Pxxφi (t), Rxxφi (t), etc.
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This notation can be extended to compound moments; for example,

P(xxφi )φm = E[(x̃t x
′
tφi )φ̃m |Gt ],

P(xφi )xφm = E[( x̃tφi )x̃
′
t φ̃m |Gt ].

The parentheses in the subscript act as delimiters in the calculation. One fourth
moment appears in what follows:

Pxxφiφm = E[x̃t x̃
′
t φ̃r φ̃m |Gt ].

A1.2 Modal Estimation

To begin, consider the modal-state estimation algorithm:

modal estimation

Between modal measurements:

dφ̂t = Q′φ̂t dt. (A1.5)

At a modal measurement:

φ̂+t = φ̂−t ∗�ϑt . (A1.6)

A1.2.1 Discussion

The modal dynamics are given in (1.12):

dφ = Q′φ dt + dmt ,

where {mt} is a purely discontinuous Ft -martingale. Decomposing the semimartin-
gale {φ̂t} (see [Ell82, Theorem 18.11]), we have

dφ̂t = E[dφt |Gt ]+ γt dνt ,

where γt is a Gt -predictable matrix process. Since {φ̂t} is trivially adapted to {Gφ
t }

(is a φ-dominated moment), {νx} can be neglected and the estimate can be written

dφ̂ = E[dφt |Gt ]+ γφφ dνφ.

For notational convenience, let Q′φt = Fφ. Then E[dφt |Gt ] = F̂φ dt . So we have

dφ̂t = F̂φ dt + γφφ dνφ, (A1.7)

where dνφ = h′φ̃ dt+dnφ. To find γφφ explicitly, the formalism used successfully
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by Elliott [Ell82] will be employed. First note that

d(φz′) = dφ z′ + φ dz′ + dφ dz′. (A1.8)

It will be assumed throughout that changes in {φt} are not simultaneous with receipt
of an observation so that dφt dz′t = 0. But

dφ z′ = (Q′φ dt + dm)z′

= Fφz′ dt + dµ, (A1.9)

where, in the development that follows, the process {µt} will represent the matrix
Ft -martingale appropriate to the equation in which it appears. The second term in
(A1.8) can be written

φ dz′ = φφ′h dt + φ dn′φ.

Combining these equations, it follows that

d(φz)′ = (φφ′h + Fφz′) dt + dµ.

Taking the Gt -expectation of this expression, we obtain

E[d(φz′) |Gt ]/dt = Rφφh + F̂φz′. (A1.10)

We can express E[d(φz′) |Gt ] in another way. Using (A1.7), we have

dφ̂ dz′ = (γφφ dνφ) dn′φ.

So

dφ̂ dz′ = γφφ dnφ dn′φ.

It is a direct calculation to show that

dφ̂ z′ = F̂φz′ dt + dµ,

φ̂ dz′ = φ̂φ′h dt + dµ.

Collecting the terms, we get

d(φ̂z′) = (γφφ dnφ dn′φ + φ̂φ′h + F̂φz′) dt + dµ,

and taking the Gt -expectation of this leads to

E[d(φ̂z′) |Gt ]/dt = γφφ Rφ + φ̂φ̂′h + F̂φz′. (A1.11)

The predictable compensators, (A1.10) and (A1.11), must be equal:

γφφ Rφ + φ̂φ̂′h + F̂φz′ = (Pφφ + φ̂φ̂′)h + F̂φz′.
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From this it follows that

γφφ = Pφφh R−1
φ . (A1.12)

Substituting this into (A1.7) yields

dφ̂t = Q′φ̂t dt + Pφφh R−1
φ dνφ, (A1.13)

which can be simplified by observing that

R−1
φ h′φ̂t = diag

(
λ̂
−1
t

)
λ̂t = 1.

So

h R−1
φ h′φ̂ = λP′1 = λ1.

Also, Pφiφ1 = 0 for every i ∈ S. Hence, γφφλ̂t = 0. So dφ̂t = Q′φ̂t dt if dz = 0,
and �φ̂t = Pφφ�ϑt if dz �= 0. Continuing, we have

�φ̂t = (diag(φ̂t)− φ̂t φ̂
′
t)�ϑt . (A1.14)

However,

φ̂′t�ϑt = φ̂′t h R−1
φ �zt =

(
R−1
φ h′φ̂t

)′
�zt = 1′�zt = 1.

So

φ̂+t − φ̂−t = diag(φ̂−t )�ϑt − φ̂−t .

This can be written

φ̂+t = φ̂−t ∗�ϑt .

Note that the PME modal estimate is Zt -adapted.

A1.3 Base-State Estimation

The dynamic equation of the base-state estimate is:

base-state estimation

Between modal measurements:

dx̂t =
(∑

i

Ai Rxφi + Bi
(
ut φ̂i − υPφφi

)+ ρ′φ̂t

)
dt + Pxχ H ′R−1

x dνx .

(A1.15)

At a modal measurement:

�x̂t = Pxφ �ϑt . (A1.16)
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A1.3.1 Discussion

The base-state dynamics are given in (A1.15):

dxt =
∑

i

(
(Ai xt + Bi (ut − υφ̃t))φi + ρ ′φt

)
dt

+
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt + θ(i, l))φi dml .

To determine the equation of evolution of the Gt -conditional mean of xt , both
components of the innovations process must be exploited:

dνt = vec(dνφ, dνx).

Let ∑
i

(
Ai xt + Bi (ut − υφ̃t)

)
φi + ρ′φt = Fx .

Direct calculation indicates that

F̂ x =
∑

i

(
Ai Rxφi + Bi

(
ut φ̂i − υPφφi

))+ ρ′φ̂t . (A1.17)

But E[dxt |Gt ] = F̂ x dt and

dx̂t = F̂ x dt + γφ dνφ + γx dνx . (A1.18)

The filter will be complete when the {γφ, γx} process is determined.
The observation can be reformed as an array, gt = (zt , yt), from which d(xt g′t) =

dx g′ + x dg′ + dx dg′. Since dφt dz′t = 0 and dwt dn′x = 0, it follows that
dx dg′ = 0. However,

dx g′ = (Fx z′ dt, Fx y′ dt)+ dµ,

where {µt} is again a matrix Ft -martingale. Also,

x dg′ = (xφ′h dt + x dn′φ, xχ ′H ′ dt + x dn′x).

Collecting terms, we obtain

d

dt
(xg′) = (xφ′h + Fx z′, xχ ′H ′ + Fx y′)+ dµ

dt
.

Taking the Gt -expectation of this gives

E[d(xt g′t) |Gt ]

dt
= (Rxφh + F̂ x z′, Rxχ H ′ + F̂ x y′). (A1.19)
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Let us again write E[d(xt g′t) | Gt ] using (A1.18). Look first at the martingale
product term, that is,

dx̂ dg′ = (γφ dνφ + γx dνx)(dn′φ, dn′x).

The components of the innovations process can be decomposed into

dνx = H χ̃t dt + dnx .

But {nx} is continuous, and {nφ} is purely discontinuous. It follows, therefore, that

dx̂ dg′ = (γφ dnφ dn′φ, γx Rx dt).

It is a direct calculation to show that

dx̂ g′ = (F̂ x z′ dt, F̂ x y′ dt)+ dµ,

x̂ dg′ = (x̂φ′h dt, x̂χ ′H dt)+ dµ.

Collecting terms, we get

d(x̂ g′)=
(
γφ dnφ dn′φ + x̂φ′h + F̂ x z′, F̂ x y′ + x̂χ ′H + γx Rx

)
dt + dµ.

(A1.20)

Taking the Gt -expectation of (A1.20) yields

E[d(x̂t g′) |Gt ]

dt
= (γφ Rφ + x̂ φ̂′h + F̂ x z′, F̂ x y′ + x̂ φ̂′H + γx Rx).

(A1.21)

The predictable compensators, (A1.18) and (A1.21), must be equal. Therefore,

γφ Rφ + x̂ φ̂′h + F̂ x z′ = (Pxφ + x̂ φ̂′)h + F̂ x z′. (A1.22)

From this it follows that

γφ = Pxφh R−1
φ , (A1.23)

with a similar calculation showing that

γx = Pxχ H ′R−1
x . (A1.24)

But γφh′φ̂ = 0. Simplifying yields (A1.15)–(A1.16).

A1.4 Some Mixed Moments

The implementation of the filter requires that the gains γx = Pxχ H ′R−1
x and

γφ = Pxφh R−1
φ be evaluated. This in turn requires the dynamic equations for three
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canonical covariance matrices,

Pxx(t)
�= E[x̃t x̃ ′t |Gt ],

Pxφ(t)
�= E[x̃t φ̃

′
t |Gt ],

and
Pxxφm (t)

�= E[x̃t x̃ ′t φ̃m |Gt ],

to be deduced. The dynamic equations involve a variety of higher moments (e.g.,
Pxφφm (t) = E[x̃t φ̃

′
t φ̃m | Gt ], Pxxφmφr (t) = E[x̃t φ̃

′
t φ̃r φ̃m | Gt ], etc.), but these

sequent moments can be expressed as algebraic functions of the canonical moments.
For use in the later development, the required identities will now be displayed.

A1.4.1 The Mixed Third Moment Pxφφm

The relevant equation is

Pxφφm = Pxφm (em − φ̂)′ − φ̂m Pxφ.

Clearly,(
Pxφφm

)
i, j = E[x̃ i φ̃ j φ̃m |Gt ] = E[x̃ i (φ j − φ̃ j )(φm − φ̂m) |Gt ].

If j = m, this becomes(
Pxφφm

)
i, j = E

[
x̃ i
(
φm − 2φ̂mφm + φ̂2

m

) ∣∣Gt
]

= (Pxφ)i,m(1− 2φ̂m),

while if j �= m(
Pxφφm

)
i, j = E[x̃ i (−φ̂mφ j − φ̂ jφm + φ̂ j φ̂m) |Gt ]

= −(Pxφ)i, j φ̂m − (Pxφ)i,m φ̂ j .

A1.4.2 The Mixed Fourth Moment Pxxφmφr

Here we have

Pxxφmφr = δr,m
(

Pxxφm + Pxx φ̂m
)− φ̂m Pxxφr − φ̂r Pxxφm − Pxx φ̂r φ̂m .

Clearly,(
Pxxφmφr

)
i, j = E[x̃ i x̃ j φ̃r φ̃m |Gt ] = E[x̃ i x̃ j (φr − φ̃r )(φm − φ̃m) |Gt ].



A1.5 Error Dynamics 229

Table A1.1. PME moment identities.

Pxφφm = Pxφm (em − φ̂)′ − φ̂m Pxφ

Pφφφm = ((em − φ̂)(em − φ̂)′ − Pφφ)φ̂m

Pxxφmφr = δr,m(Pxxφm + Pxx φ̂m)− φ̂m Pxxφr − φ̂r Pxxφm − Pxx φ̂r φ̂m

P(xφi )x = Pxxφi + Pxx φ̂i + x̂ Pφi x

P(xφi )φ = Pxφφi + Pxφφ̂i + x̂ Pφiφ

Rxxφi = Pxxφi + Pxx φ̂i + Pxφi x̂
′ + x̂ P ′

xφi
+ x̂ x̂ ′φ̂i

P(xφi )xφm = Pxxφiφm + φ̂i Pxxφm + x̂ Pφi xφm − Pxφi Pφm x

P(xxφi )φm = (δi,m − φ̂m)Rxxφi

If m = r , this becomes(
Pxxφmφr

)
i, j = E

[
x̃ i x̃ j

(
φm − 2φ̂mφm + φ̂

2
m

) ∣∣Gt
]

= (Pxxφm + φ̂m Pxx
)

i, j (1− 2φ̂m)+ φ̂
2
m(Pxx)i, j ,

while if m �= r(
Pxxφmφr

)
i, j = E[x̃ i x̃ j (−φ̂mφr − φ̂rφm + φ̂r φ̂m) |Gt ]

= −φ̂r
(

Pxxφm + φ̂m Pxx
)

i, j − φ̂m
(

Pxxφr + φ̂r Pxx
)

i, j

+ (Pxx)i, j φ̂r φ̂m .

Continuing with this direct evaluation, we can produce the list of identities shown
in Table A1.1.

A1.5 Error Dynamics

Before computing the three canonical higher moments, the Ft -dynamics of {x̃t x̃ ′t},
{x̃t φ̃

′
t}, and {x̃t x̃ ′t φ̃m} are required. These and the underlying error dynamics of the

{x̃t} and {φ̃t} processes are tabulated in Tables A1.2 and A1.3.

Table A1.2. Error process dynamics.

{x̃t } dx̃t =
∑

i

(Ai
˜(xtφi )+ Bi (s̃i ut − υ ˜(φ̃φi ))+ (ρ′ − γφh′)φ̃t

− γx H χ̃t ) dt − γx dnx − γφ dnφ +
∑

i

Ciφi dwt

+
∑

i,l

(M(i, l)xt + θ(i, l))φi dml

{φ̃t } dφ̃t = (Q′ − γφφh′)φ̃t dt − γφφ dnφ + dmt
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Table A1.3. Mixed error process dynamics.

(x̃t x̃ ′t ) d(x̃t x̃ ′t )=
((∑

i

(Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜(φ̃φi )))

+ (ρ′ − γφh′)φ̃t − γx H χ̃t

)
dt +

∑
i

Ciφi dwt

+
∑

i,l

(M(i, l)xt + θ(i, l)) φi dml − γx dnx − γφ dnφ

)
x̃ ′t

+ x̃t (·)′ +
(
γx Rxγ

′
x +
∑

i

Rχ (i)φi

)
dt + γφ dnφ dn′φγ

′
φ

+
∑
i,l,r

(M(i, l)xt + θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr

(x̃t φ̃
′
t ) d(x̃t φ̃

′
t )=
((∑

i

(Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜(φ̃φi )))

+ (ρ′ − γφh′)φ̃t − γx H χ̃t

)
dt − γx dnx − γφ dnφ

+
∑

i

Ciφi dwt +
∑

i,l

(M(i, l)xt + θ(i, l))φi dml

)
φ̃′t

+ x̃ t ((Q′ − γφφh′)φ̃t dt − γφφ dnφ + dm)′ + γφ dnφ dn′φγ
′
φφ

+
∑

i,l

(M(i, l)xt + θ(i, l))φi dml dm ′

(x̃t x̃ ′t φ̃m) d(x̃t x̃ ′t φ̃m)=
[((∑

i

(Ai
˜(xtφi )+ Bi (φ̃i ut −υ ˜(φ̃φi )))+ (ρ′ − γφh′)φ̃t

− γx H χ̃t

)
dt − γx dnx − γφ dnφ +

∑
i

Ciφi dwt

+
∑

i,l

(M(i, l)xt + θ(i, l))φi dml

)
x̃ ′t + x̃t (·)′

+
(
γx Rxγ

′
x +

∑
i

Rχ (i)φi

)
dt +

∑
i,l,r

(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr

+ γφ dnφ dn′φγ
′
φ

]
φ̃m + x̃t x̃ ′t ((Q′ − γφφh′)φ̃t dt

− γφφ dnφ + dm)m − (γφ dnφ x̃ ′t + (γφ dnφ x̃ ′t )
′

− γφ dnφ dn′φγφ)(−γφφ dnφ)m +
((∑

i,l

(M(i, l)xt

+ θ(i, l))φi dml x̃ ′t

)
+ (·)′ +

∑
i,l,r

(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr

)
dmm
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A1.5.1 Discussion

It follows directly from Tables A1.2 and A1.3 that

dx̃t =
(∑

i

(
Ai
˜(xtφi )+ Bi

(
φ̃i ut − υ

(
φ̃φi − Pφφi

)))+ ρ′φ̃t

)
dt

− γx dνx − γφ dνφ +
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt

+ θ(i, l))φi dml .

The innovations terms can be expanded in terms of Ft -martingales to yield

dx̃t =
(∑

i

(
Ai
(
xtφi − Rxφi )+ Bi (φ̃i ut − υ ˜

(φ̃φi )
))+ ρ′φ̃t

)
dt

− γx dnx − γφ dnφ +
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt

+ θ(i, l))φi dml − γx H φ̃t dt − γφh′φ̃t dt.

To find the dynamic equation for {x̃t x̃ ′t}, observe that

(dx̃t)x̃
′
t =

(∑
i

(
Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜

(φ̃φi ))

+ (ρ′Q′ − γφh′)φ̃t − γx H χ̃t

)
dt − γx dnx − γφ dnφ

+
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
x̃ ′t .

Also,

(dx̃t)dx̃ ′t =
(
− γx dnx − γφ dnφ +

∑
i

Ciφi dwt + ρ′ dmt

)
(·)′.

Neglecting orthogonal products, we obtain

(dx̃t)dx̃ ′t =
(
γx Rxγ

′
x +

∑
i

Rχ(i)φi

)
dt +

∑
i,l,r

(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′ φi dml dmr + γφ dnφ dn′φγ
′
φ,

and similarly,

dφ̃t = (Q′ − γφφh′)φ̃t dt − γφφ dnφ + dmt .
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To find the dynamic equation for {x̃t φ̃
′
t}, observe that

(dx̃t)φ̃
′
t =

((∑
i

(Ai
˜(xtφi ) + Bi (φ̃i ut − υ ˜

(φ̃φi )))

+(ρ′ − γφh′)φ̃t − γx H χ̃t

)
dt − γx dnx − γφ dnφ

+
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
φ̃′t .

Also,

x̃t(dφ̃t)
′ = x̃t((Q′ − γφφh′)φ̃t dt − γφφ dnφ + dm)′.

Finally,

(dx̃t)dφ̃
′
t =

(
− γx dnx − γφ dnφ +

∑
i

Ciφi dwt

+
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
(−γφφ dnφ + dm)′

= γφ dnφ dn′φγ
′
φφ +

∑
i,l

(M(i, l)xt + θ(i, l))φi dml dm ′.

Direct substitution gives the dynamic equation for d(x̃t φ̃
′
t). The development of the

equation for d(x̃t x̃ ′t φ̃m) follows the same pattern.
Before computing the base-state error covariance matrix, some moment identities

related to the discontinuous martingales are useful. These simplify some of the
special versions of the PME.

A1.5.2 The Predictable Quadratic Variation of {mt}
We have

E[ dm dm ′ |Ft ] = d〈m,m;Ft 〉t
= [diag(Q′φt)− (diagφt)Q − Q′(diagφt)] dt

= V(φt) dt,

where V(φt) = ∑i V(ei )φi [EAM95, Appendix B]. The Gt -predictable quadratic
variation of {mt} is the expected value of d〈m,m;Ft 〉t :

d〈m,m;Gt 〉t =
∑

i

V(ei )φ̂i dt = V(φ̂t) dt.
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A1.5.3 The Predictable Cubic Variation of {mt}
Let

E[ dm dm ′ dmk |φt = er] = Uk(er) dt.

Then direct evaluation yields

Uk(er ) = (er − ek)Qrk(er − ek)
′ + [er ⊗ (e′r Q)

+ (er ⊗ (e′r Q))′ − diag(e′r Q)] δr,k .

Hence,

E[ dm dm ′ dmk |Ft ] =
∑

r

Uk(φr ) dt,

and

E[ dm dm ′ dmk |Gt ] =
∑

r

Uk(er)φ̂r dt = Uk(φ̂t) dt.

A1.5.4 The Predictable Cubic Variation of {nt}
In contrast to {mt}, only one component of {nφ} changes at a time. Suppose that
�zt = ei . Then dnφ dn′φ(dni ) = Ei. The probability of this event occurring if
φt− = ek is λPi,k dt . So

E[dnφ dn′φ( dni ) |φ = ek] = hki Ei dt.

This can be written as

E[dnφ dn′φ(dni ) |Ft ] = λi Ei dt,

E[dnφ dn′φ(dni ) |Gt ] = λ̂i Ei dt.

A1.5.5 Moment Identities

Since
∑

i∈S φ̂i ≡ 1,
∑

i∈S φ̃i ≡ 0. Therefore,∑
i

Pxxφi = 0,

Pxφφm 1 = 0,

and ∑
r

Pxxφmφr =
∑

m

Pxxφmφr = 0.
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A1.6 Base-State Covariance

The dynamic equation of the base-state error covariance is:

base-state covariance

Between modal measurements:

d

dt
Pxx=

(∑
i

(Ai (Pxxφi + Pxx φ̂i + x̂t Pφi x)+ Bi (ut Pφi x − υ(Pφxφi

−Pφx φ̂i )))+ ρ′Pφx

)
+ (·)′ − γx Rxγ

′
x +

∑
i

Rχ(i)φ̂i

+
∑
i,l

Qil
(
M(i, l)Rxxφi M(i, l)′ + θ(i, l)φ̂iθ(i, l)′

)
+
∑
i,l

Qil
(
M(i, l)Rxφi θ(i, l)′ + θ(i, l)Rφi x M(i, l)′

)
. (A1.25)

At a modal measurement:

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk . (A1.26)

Discussion

To compute the error covariance, note first that the dynamic equation of the outer
product of the base-state error is given above:

d(x̃t x̃
′
t) =

((∑
i

(Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜

(φ̃φi )))+ (ρ′ − γφh′)φ̃t

− γx H χ̃t

)
dt − γx dnx − γφ dnφ +

∑
i

Ciφi dwt

+
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
x̃ ′t + (·)′ + γφ dnφ dn′φγ

′
φ

+ γx Rxγ
′
x dt +

∑
i

Rχ(i)φi dt +
∑
i,l,r

(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr

= Fxx dt + dµt , (A1.27)
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where Fxx is the Ft -compensator of {x̃t x̃ ′t}, and {µt} is a matrix Ft -martingale.
Direct calculation indicates that

F̂ xx =
(∑

i

(
Ai
(

Pxxφi + Pxx φ̂i + x̂t Pφi x
)+ Bi

(
ut Pφi x − υ

(
Pφxφi

− Pφx φ̂i
)))+ (ρ′ − γφh′)Pφx − γx Rxγ

′
x

)
+ (·)′ + γx Rxγ

′
x

+
∑

i

Rχ(i)φ̂i +
∑
i,l

Qil
(
M(i, l)Rxxφi M(i, l)′ + θ(i, l)φ̂iθ(i, l)′

)
+
∑
i,l

Qil
(
M(i, l)Rxφi θ(i, l)′ + θ(i, l)Rφi x M(i, l)′

)+ γφ Rφγ
′
φ.

(A1.28)

It is known that {Pxx} is a φ-dominated moment of {yt}. Consequently, only dνφ
need be considered in the computation of d Pxx :

d Pxx = F̂ xx dt +
∑

k

γxx(k)d(νφ)k, (A1.29)

where {γxx(k); k ∈ S} is a set of Gt -predictable gain matrices. Since {νφ} is the only
part of the innovations process that enters into this calculation, (νφ)k will be written
νk . As we have done before, we note that

d(x̃t x̃
′
t z
′
t) = d(x̃t x̃

′
t)z

′ + x̃t x̃t dz′ + d(x̃t x̃
′
t) dz′.

First,

d(x̃t x̃
′
t) dzi =

((
− γx dnx − γφ dnφ +

∑
i,l

(M(i, l)xt + θ(i, l))φi dml
)
x̃ ′t

+
∑

i

Ciφi dwt

)
+ (·)′ + γφ dnφ dn′φγ

′
φ

)
dni

+
∑
i,l

(M(i, l)xt + θ(i, l))(M(i, l)xt + θ(i, l))′φi dml,

where only the martingale products have been retained, and (nφ)i has been written
ni . We need to consider terms like

γφ dnφ x̃ ′t dni = γφei dni x̃
′
t .

So

E[γφ dnφ x̃ ′t dni |Ft ] = γφei

∑
k

x̃ ′t hikφk .
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Continuing, we have

E[γφ dnφ x̃ ′t dni |Gt ] = γφei

∑
k

hik Pφk x

= γφei (h
′Pφx)i.

Further, dm dni = 0. Completing the expectation yields

E[d(x̃t x̃
′
t) dzi |Gt ] = λ̂iγφeiγ

′
φ − γφei h

′Pφi x −
(
γφei h

′Pφi x
)′

= −λ̂iγφeiγ
′
φ. (A1.30)

From (A1.27) we have

d(x̃t x̃
′
t)zi = Fxx zi dt + dµ.

Taking the expectation of this, we find

E[d(x̃t x̃
′
t)zi |Gt ]/dt = F̂ xx zi .

Also,

(x̃t x̃
′
t) dzi = (x̃t x̃

′
t)((φ

′h)i dt + dni ),

and taking the expectation of this gives

E[(x̃t x̃
′
t) dzi |Gt ]/dt =

∑
k

(
Pxxφk + Pxx φ̂k

)
hki . (A1.31)

Combining terms yields

E[d(x̃t x̃
′
t zi ) |Gt ]/dt = −λ̂iγφeiγ

′
φ + F̂ xx zi +

∑
k

(
Pxxφk + Pxx φ̂k

)
hki .

(A1.32)

To develop a comparable representation for {Pxx} recall that

d Pxx = F̂ xx dt +
∑

k

γxx(k)(h
′φ̃t dt + dnφ)k .

Since dnk dni = δk,i , it follows that

d Pxx dzi =
∑

k

γxx(k) dnk dni

= γxx(i) dni .

Taking the expectation leads to

E[(d Pxx) dzi |Gt ]/dt = γxx(i)λ̂i .
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Further, E[d Pxx zi |Gt ]/dt = F̂ xx zi and E[Pxx dzi |Gt ]/dt = Pxxλ̂i . Combining
terms gives

E[d Pxx zi |Gt ]/dt = (γxx(i)+ Pxx)λ̂i + F̂ xx zi . (A1.33)

Equating (A1.32) and (A1.33) yields

(γxx(i)+ Pxx)λ̂i + F̂ xx zi

= −λ̂iγφeiγ
′
φ + F̂ xx zi +

∑
k

(
Pxxφk + Pxx φ̂k

)
hki .

Solving for γxx(i), it follows that

γxx(i) = −γφeiγ
′
φ + λ̂

−1
i

∑
k

Pxxφk hki . (A1.34)

The innovations dependent term in (A1.29) can now be written as∑
i

γxx(i) dνi = −
∑

i

γφeiγφ dνi +
∑

k

Pxxφk

(
h R−1

φ dνφ
)

k . (A1.35)

Substituting (A1.28) and (A1.35) into (A1.29), we have

d Pxx =
((∑

i

(
Ai
(

Pxxφi + Pxx φ̂i + x̂t Pφi x)+ Bi (ut Pφi x

−υ(Pφxφi − Pφx φ̂i
)))+ (ρ′ − γφh′)Pφx − γx Rxγ

′
x

)
+ (·)′

+ γx Rxγ
′
x +

∑
i

Rχ(i)φ̂i + γφ Rφγ
′
φ

)
dt −

∑
i

γφeiγφ dνi

+
∑
i,l

Qil
(
M(i, l)Rxxφi M(i, l)′ + θ(i, l)φ̂iθ(i, l)′

)
dt

+
∑
i,l

Qil
(
M(i, l)Rxφi θ(i, l)′ + θ(i, l)Rφi x M(i, l)′

)
dt

+
∑

k

Pxxφk

(
h R−1

φ dνφ
)

k .

There are ways in which this can be simplified. Between jumps in {zt}, h R−1
φ dνφ

= −λ1. So,∑
k

Pxxφk
(
h R−1

φ dνφ
)

k = 0.
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Also,
∑

i γφeiγφλ̂i = γφh′Pφx . When there is no observation, this can be written as

d

dt
Pxx =

(∑
i

(
Ai
(

Pxxφi + Pxx φ̂i + x̂t Pφi x
)+ Bi

(
ut Pφi x − υ

(
Pφxφi

− Pφx φ̂i
)))+ (ρ′Q′ − γφh′)Pφx − γx Rxγ

′
x

)
+ (·)′

+ γx Rxγ
′
x + 2γφ Rφγ

′
φ +

∑
i

Rχ(i)φ̂i

+
∑
i,l

Qil
(
M(i, l)Rxxφi M(i, l)′ + θ(i, l)φ̂iθ(i, l)′

)
+
∑
i,l

Qil
(
M(i, l)Rxφi θ(i, l)′ + θ(i, l)Rφi x M(i, l)′

)
.

When there is an observation

�Pxx = −γφdiag(dz)γ ′φ +
∑

k

Pxxφk (k)
(
h R−1

φ dz
)

k,

or

�Pxx = −�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk .

Simplifying yields the result.

A1.7 Base-State Modal-State Cross Covariance

base-state, modal-state cross covariance

Between modal measurements:

d

dt
Pxφ =

∑
i

(
Ai
(

Pxφφi + Pxφφ̂i + x̂t Pφiφ

)+ Bi
(
ut Pφiφ

−υ
(

Pφφφi − Pφφφ̂i
)))+ ρ′Pφφ − γx H Pχφ

+ Pxφ Q +
∑
i,l

Qil
(
M(i, l)Rxφi + θ(i, l)φ̂i

)
e′l .

At a modal measurement:

�Pxφ = −�x̂�φ̂′ +
∑

k

Pxφφk�ϑk . (A1.36)
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A1.7.1 Discussion

To compute the error cross covariance, note first that the dynamic equation of the
error outer product is presented in Table A1.3:

d(x̃t φ̃
′
t) =

((∑
i

(Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜

(φ̃φi )))

+ (ρ′ − γφh′)φ̃t − γx H χ̃t

)
dt − γx dnx − γφ dnφ

+
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
φ̃′t

+ x̃t((Q′ − γφφh′)φ̃t dt − γφφ dnφ + dm)′ + γφ dnφ dn′φγ
′
φφ

+
∑
i,l

(M(i, l)xt + θ(i, l))φi dml dm,

so that

d(x̃t φ̃
′
t) = Fxφ dt + dµt , (A1.37)

where Fxφ is the Ft -compensator of {x̃t φ̃t}. Direct calculation indicates that

F̂ xφ =
∑

i

(
Ai
(

Pxφφi + Pxφφ̂i + x̂t Pφiφ

)+ Bi
(
ut Pφiφ

−υ(Pφφφi − Pφφφ̂i
)))+ ρ′Pφφ − γx H Pχφ + Pxφ Q

+
∑
i,l

Qil
(
M(i, l)Rxφi + θ(i, l)φ̂i

)
el
′ − γφh′Pφφ. (A1.38)

But {Pxφ} is a φ-dominated moment (trivially so). Consequently,

d Pxφ = F̂ xφ dt +
∑

k

γxφ(k) dνk, (A1.39)

where {γxφ(k); k ∈ S} is a set of Gt -predictable gain matrices. Hence

d(x̃t φ̃
′
t) dzi = (γφ dnφ dn′φγ

′
φφ − γφ dnφφ̃

′ + x̃t(−γφφ dnφ)
′) dni .

Therefore,

E[d(x̃t φ̃
′
t) dzi |Gt ]/dt = −λ̂iγφEiγ

′
φφ, (A1.40)
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and from (A1.40) we have

E[d(x̃t φ̃
′
t)zi |Gt ]/dt = F̂ xφzi . (A1.41)

Also,

(x̃t φ̃
′
t) dzi = (x̃t φ̃

′
t)((φt

′h)i dt + dni )

with expectation

E[(x̃t φ̃
′
t) dzi |Gt ]/dt =

∑
k

(
Pxφφk + Pxφφ̂k

)
hki . (A1.42)

Now combine (A1.40)–(A1.42) to get

E[d(x̃t φ̃
′
t zi ) |Gt ]/dt =− λ̂iγφEiγ

′
φφ +F̂ xφzi +

∑
k

(
Pxφφk + Pxφφ̂k

)
hki dt.

(A1.43)

To develop a comparable equation, (A1.39) can be expanded to obtain a repre-
sentation for {Pxφ}:

d Pxφ = F̂ xφ dt +
∑

k

γxφ(k)(h
′φ̃t dt + dnφ)k .

Thus,

d Pxφ dzi =
(∑

k

γxφ(k) dnk

)
dni

= γxφ(i) dni .

Taking the expectation of this yields

E[d Pxφ dzi |Gt ]/dt = γxφ(i)λ̂i .

It follows directly that

E[(d Pxφ)zi |Gt ]/dt = F̂ xφzi ,

and

E[(Pxφ) dzi |Gt ]/dt = Pxφλ̂i .

Combining these, we obtain

E[(d(Pxφzi ) |Gt ]/dt = (γxφ(i)+ Pxφ)λ̂i + F̂ xφzi . (A1.44)
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Equating (A1.43) and (A1.44) gives

(γxφ(i)+ Pxφ)λ̂i + F̂ xφzi

= −λ̂iγφeiγ
′
φφ + F̂ xφzi +

∑
k

(
Pxφφk + Pxφφ̂k

)
hki . (A1.45)

Thus,

γxφ(i) = −γφEiγ
′
φφ + λ̂

−1
i

∑
k

Pxxφk hki . (A1.46)

The innovations dependent term in (A1.39) can now be written as

∑
i

γxφ(i) dνi = −
∑

i

γφEiγφφ dνi +
∑

k

Pxφφk

(
h R−1

φ dνφ
)

k . (A1.47)

Substituting (A1.38) and (A1.47) into (A1.39) we have

d Pxφ =
(∑

i

(
Ai
(

Pxφφi + Pxφφ̂i + x̂t Pφiφ

)+ Bi
(
ut Pφiφ

− υ
(

Pφφφi − Pφφφ̂i
))+ ρ′Pφφ − γx H Pχφ + Pxφ Q

+
∑
i,l

Qil
(
M(i, l)Rxφi + θ(i, l)φ̂i

)
el
′ − γφh′Pφφ

)
dt

−
∑

i

γφEiγφφ dνi +
∑

k

Pxφφk

(
h R−1

φ dνφ
)

k .

There are ways in which this can be simplified. Between jumps in {zt},∑k Pxφφk

(h R−1
φ dνφ)k = 0. Also,∑

i

γφeiγφφλ̂i = γφh′Pφφ.

When there is no observation, this can be written as

d Pxφ

dx
=
∑

i

(
Ai
(

Pxφφi + Pxφφ̂i + x̂t Pφiφ

)+ Bi
(
ut Pφiφ

−υ(Pφφφi − Pφφφ̂i
)))+ ρ′Pφφ − γx H Pχφ + Pxφ Q

+
∑
i,l

Qil
(
M(i, l)Rxφi + θ(i, l)φ̂i

)
el
′.

When there is an observation,

�Pxφ = −γφdiag(dz)γ ′φφ +
∑

k

Pxφφk

(
h R−1

φ dz
)

k,
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or

�Pxx = −�x̂�φ̂′ +
∑

k

Pxφφk�ϑk .

A1.8 A Mixed Third Central Moment

To complete the equation for the second moment matrices, the mixed third central
moments, {Pxxφi , i ∈ S}, must be evaluated. This requires even more detailed anal-
ysis than that leading to the second moments. However, the underlying procedure
is the same.

a mixed third central moment

Between modal measurements:

d

dt
Pxxφm =

(∑
i

(
Ai
(

Pxxφiφm + φ̂i Pxxφm + x̂ Pφi xφm − Pxφi Pφm x
)

+ Bi
(
ut Pφi xφm − υ

(
(ei − φ̂)Pφi x

(
δi,m − φ̂m

− Pφφi Pxφm

))))+ ρ′Q′Pφxφm

)− γx H Pχxφm

)
+ (·)′

+
∑

j

Pxxφ j Q jm + Rχ(i)Pφiφm +
(
ρ′Pφxφm + Pxφφmρ

)
+
∑
i,l

Qil
(
M(i, l)

(
P(xxφi )φm + δl,m Rxxφi

)
M(i, l)′

+ M(i, l)
((

P(xφm)φ

)
·i + δl,m Rxφi

)
θ(i, l)′

+ θ(i, l)
((

P ′(xφm)φ

)
i · + δl,m Rφi x

)
M(i, l)′

+ θ(i, l)
(

Pφiφm + δl,m φ̂i
)
θ(i, l)′

)
+
∑

i

Qim
(
M(i,m)P(xφi )x + θ(i,m)Rφi x

+ P(xφi )x M(i,m)′ + Rxφi θ(i,m)′
)
. (A1.48)

At a modal measurement:

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m Pxx
+ −�x̂ P+φm x

− P+xφm
�x̂ ′ +

∑
i

Pxxφmφi�ϑi . (A1.49)
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A1.8.1 Discussion

The procedure used earlier will be followed step-by-step:

d(x̃t x̃
′
t φ̃m) =

(((∑
i

(Ai
˜(xtφi )+ Bi (φ̃i ut − υ ˜

(φ̃φi )))

+ (ρ′ − γφh′)φ̃t − γx H χ̃t

)
dt − γx dnx − γφ dnφ

+
∑

i

Ciφi dwt +
∑
i,l

(M(i, l)xt + θ(i, l))φi dml

)
x̃ ′t

+ (·)′ +
(
γx Rxγ

′
x +

∑
i

Rχ(i)φi

)
dt +

∑
i,l,r

(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr

+ γφ dnφ dn′φγ
′
φ

)
φ̃m + (x̃t x̃

′
t)((Q′ − γφφh′)φ̃t dt

− γφφ dnφ + dm)m + (−γφ dnφ x̃ ′t + (−γφ dnφ x̃ ′t)
′

+ γφ dnφ dn′φγφ)(−γφφ dnφ)m +
(∑

i,l

(M(i, l)xt

+ θ(i, l))φi dml x̃
′
t

)
+ (·)′ +

∑
i,l,r

(
(M(i, l)xt

+ θ(i, l))(M(i, r)xt + θ(i, r))′φi dml dmr
)

dmm,

or

d(x̃t x̃
′
t φ̃m) = Fxxφm dt + dµt , (A1.50)

where Fxxφm is the Ft -compensator of {x̃t x̃ ′t φ̃m}. Direct calculation indicates that

F̂ xxφm =
(∑

i

(
Ai
(

Pxxφiφm + φ̂i Pxxφm + x̂ Pφi xφm − Pxφi Pφm x
)

+ Bi
(
ut Pφi xφm − υ

(
(ei − φ̂)Pφi x

(
δi,m − φ̂m − Pφφi Pxφm

))))
+ (ρ′ − γφh′)Pφxφm − γx H Pχxφm

)
+ (·)′ + γφ

∑
k

ekhik Pφiφmγ
′
φ

+
∑

j

Pxxφ j (Q′ − γφφh′) jm + γφ
∑

j

e j (h
′Pφx) j ·(γφφ)mj
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+
(
γφ
∑

j

e j (h
′Pφx) j ·(γφφ)mj

)′
− γφ

∑
j

Ejλ̂ j (γφφ)mj γ
′
φ

+
∑

i

Rx(i)Pφiφm +
∑
i,l

Qil
(
M(i, l)P(xxφi )φm M(i, l)′

+ M(i, l)
(

P(xφm)φ

)
·iθ(i, l)′ + θ(i, l)

(
P ′(xφm)φ

)
·i M(i, l)′

+ θ(i, l)Pφiφmθ(i, l)′
)+∑

i

Qim
(
M(i,m)Rxxφi M(i,m)′

+ M(i,m)Rxφi θ(i,m)′ + θ(i,m)Rφi x M(i,m)′

+ θ(i,m)φ̂iθ(i,m)′
)+∑

i

Qim
(
M(i,m)P(xφi )x

+ θ(i,m)Rφi x + Px(xφi )M(i,m)′ + Rxφi θ(i,m)′
)
.

This can be written in a simpler form:

F̂ xxφm =
(∑

i

(
Ai
(

Pxxφiφm + φ̂i Pxxφm + x̂ Pφi xφm − Pxφi Pφm x
)

+ Bi
(
ut Pφi xφm − υ

(
(ei − φ̂)Pφi x

(
δi,m − φ̂m − Pφφi Pxφm

))))
+ (ρ′ − γφh′)Pφxφm − γx H Pχxφm

)
+ (·)′

+
∑

j

Pxxφ j (Q′ − γφφh′) jm + Rχ(i)Pφiφm

+ 2γφdiag(λ̂ ∗ (γφφ)m.)γ
′
φ +

∑
i,l

Qil
(
M(i, l)

(
P(xxφi )φm

+ δl,m Rxxφi

)
M(i, l)′ + M(i, l)

((
P(xφm)φ

)
.i + δl,m Rxφi

)
θ(i, l)′

+ θ(i, l)
((

P ′(xφm)φ

)
i. + δl,m Rφi x

)
M(i, l)′

+ θ(i, l)
(

Pφiφm + δl,m φ̂i
)
θ(i, l)′

)+∑
i

Qim
(
M(i,m)P(xφi )x

+ θ(i,m)Rφi x + P ′(xφi )x M(i,m)′ + Rxφi θ(i,m)′
)
.

But {Pxxφm } is a φ-dominated moment (again trivially so). Consequently,

d Pxxφm = F̂ xxφm dt +
∑

k

γxxφm (k) dνk, (A1.51)
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where {γxxφm (k); k ∈ S} are the set of Gt -predictable gain matrices. But

d(x̃t x̃
′
t φ̃m) dzi =

(
(−γφ dnφ x̃ ′t − x̃t dn′φγ

′
φ + γφ dnφ dn′φγ

′
φ)

× (φ̃m − γφφ dnφ)m − (x̃t x̃
′
t)(γφφ dnφ)m

)
dnk .

Taking the expectation and simplifying, we get

E[d(x̃t x̃
′
t φ̃m) dzi |Gt ]/dt

= −γφei

∑
α

hαi
(

Pφm xφα + φ̂α Pφm x − h′Pφi x(γφφ)mi
)+ (·)′

−
∑
α

hαi
(

Pxxφα + φ̂α Pxx
)
(γφφ)mi .

Also,

E[d(x̃t x̃
′
t φ̃m)zi |Gt ]/dt = F̂ xxφm zi

and

E[(x̃t x̃
′
t φ̃m)dzi |Gt ]/dt = λ̂i Pxxφm +

∑
j

Pxxφmφ j h jk .

Combining these yields

E[d(x̃t x̃
′
t φ̃mzi ) |Gt ]/dt

= −γφei

∑
α

hαi
(

Pφm xφα + φ̂α Pφm x − h′Pφi x(γφφ)mi

+ (·)′ −
∑
α

hα,i
(

Pxxφα + φ̂α Pxx
)
(γφφ)mi

+ F̂ xxφzi + λ̂i Pxxφm +
∑

j

Pxxφmφ j h jk . (A1.52)

To develop an equation comparable to (A1.52), (A1.51) can be expanded to obtain
a representation for {Pxxφm }: (d Pxxφm ) dzi = γxxφm (i) dni . Taking the expectation
of this we get

E
[(

d Pxxφm

)
dzi
∣∣Gt
]/

dt = γxxφm (i)λ̂i .

From (A1.51), it follows directly that E[(d Pxxφm )zi |Gt ]/dt = F̂ xxφzi . Further,

E
[
Pxxφm dzi

∣∣Gt
]/

dt = Pxxφm λ̂i .

Combining these expressions gives

E
[(

d
(

Pxxφm zi
) ∣∣Gt

]/
dt = (γxxφm (i)+ Pxxφm

)
λ̂i + F̂ xxφm zi . (A1.53)
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Equating (A1.52) and (A1.53), we get(
γxxφm (i)+ Pxxφm

)
λ̂i + F̂ xxφzi

= −γφei

∑
α

hαi
(

Pφm xφα + φ̂α Pφm x
)− h′Pφi x(γφφ)mi + (·)′

−
∑
α

hαi (Pxxφα + φ̂α Pxx)(γφφ)mi + F̂ xxφm zi

+ λ̂i Pxxφm +
∑

j

Pxxφmφ j h jk,

or

γxxφm (i) = λ̂
−1
i

(
−γφei

∑
α

hαi
(

Pφm xφα + φ̂α Pφm x
)− h′Pφi x(γφφ)mi

+ (·)′ −
∑
α

hαi
(

Pxxφα + φ̂α Pxx
)
(γφφ)mi +

∑
j

Pxxφmφ j h ji

)
.

(A1.54)

Equations (A1.51) and (A1.54) yield the sought after result. We can simplify
this. Since, dνi = dzi − λ̂i dt , we can look at the innovations dependent terms
when there is no observation:∑

i

γxxφm (i)λ̂i =
∑

i

(
−γφei

∑
α

hαi
(

Pφm xφα + φ̂α Pφm x
)

− h′Pφi x(γφφ)mi

)
+ (·)′

−
∑
α

hαi
(

Pxxφα + φ̂α Pxx
)
(γφφ)mi +

∑
j

Pxxφmφ j h ji

=
(
−γφh′Pφxφm − γφλ̂Pφm x + γφdiag(λ̂ ∗ (γφφ)m.)γ

′
φ

)
+ (·)′ −

∑
α

(γφφh′)mα Pxxφα +
∑

i

λ̂i (γφφ)mi Pxx

+
∑

j

Pxxφmφ j

∑
i

h ji .

But ∑
i

λ̂i (γφφ)m,i Pxx +
∑

j

Pxxφmφ j

∑
i

h ji = 0,

γφλ̂Pφm x = 0,
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and

F̂ xxφm −
∑

i

γxxφm (i)λ̂i

=
(∑

i

(
Ai
(

Pxxφiφm + φ̂i Pxxφm + φ̂Pφi xφm − Pxφi Pφm x
)

+ Bi
(
ut Pφi xφm − υ

(
(ei − φ̂)Pφi x

(
δi,m − φ̂m − Pφφi Pxφm

))))
+ ρ′Q′Pφxφm − γx H Pχxφm

)
+ (·)′ +

∑
j

Pxxφ j Q′
mj

+ Rχ(i)Pφiφm +
(
ρ′Pφxφm + Pxφφmρ

)+∑
i,l

Qil
(
M(i, l)

× (P(xxφi )φm + δl,m Rxxφi

)
M(i, l)′ + M(i, l)

((
P(xφm)φ

)
.i

+ δl,m Rxφi

)
θ(i, l)′ + θ(i, l)

((
P ′(xφm)φ

)
i. + δl,m Rφi x

)
M(i, l)′

+ θ(i, l)
(

Pφiφm + δl,m φ̂i
)
θ(i, l)′

)+∑
i

Qim
(
M(i,m)P(xφi )x

+ θ(i,m)Rφi x + P(xφi )x M(i,m)′ + Rxφi θ(i,m)′
)
.

Equation (A1.48) then follows. When there is an observation

�Pxxφm = −Pxφ�ϑ�ϑ ′em Pφm x −
(

Pxφ�ϑ�ϑ ′em Pφm x
)′ + Pxxφm

×(�ϑm − 1)+ φ̂m�ϑm

(
2Pxφ�ϑ�ϑ ′Pφx −

∑
i

Pxxφi�ϑi

)
.

The update equation can be simplified by observing the following:

φ̂m�ϑm

(
2Pxφ�ϑ�ϑ ′Pφx −

∑
i

Pxxφi�ϑi

)

= φ̂+m(�x̂�x̂ ′ −�Pxx)
∑

i

Pxxφmφi�ϑi Pxxφm (�ϑm − 1)

+ φ̂+m Pxx − φ̂m

(
Pxx +

∑
i

Pxxφi�ϑi

)
.
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Or

Pxxφm (�ϑm − 1) =
∑

i

Pxxφmφi�ϑi −�φ̂m Pxx + φ̂m(�Pxx +�x̂�x̂ ′).

Additionally,

�x̂�ϑ ′em Pφm x = �x̂ P+φm x + φ̂
+
m�x̂�x̂ ′.

Combining these expressions gives

�Pxxφm = −�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x

− P+xφm
�x̂ ′ +

∑
i

Pxxφmφi�ϑi .

When the base-state observations are discrete, (y[k] = Hχ [k] + n[k]; E[n[k]
n[k]′] = Rx > 0), the PME must be modified. As in the Kalman filter, be-
tween observations the Gt -moments are extrapolated without dependence on the
observation (Rx = ∞). At a measurement there is a correction. The predictable
quadratic variation of the innovations process, �νx [k] = y[k]− ŷ[k], differs from
that found in the continuous case: E[(dνx) dν ′x | Gφ

t ]/dt = Rx for continuous
observations;

E
[
�ν[k]�ν[k]′

∣∣Gφ
t
] = H Pχχ H ′ + Rx

for discrete observations. In the discrete PME , the innovations gain are modified:

γx = Pχx H ′(E[(dνx) dν ′x
∣∣Gφ

t
]/

dt
)−1

for continuous observations, and

γx = Pχx H ′(E[�νk�ν ′k
∣∣Gφ

t
])−1

for discrete observations. This leads to the update equations for the Kalman
filter:

�x̂ = γx�νx ;�Pxx = −γx(H Pχχ H ′ + Rx)γ
′
x

with γx = Pχx H ′(H Pχχ H ′ + Rx)
−1. To implement the PME with discrete mea-

surements, the same replacements will be made.
We can combine these results into a table showing the PME algorithm.
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the PME: time-continuous state; time-discrete measurements

Between observations:

d

dt
φ̂t = Q′φ̂t ,

d

dt
x̂t =

∑
i

M1(i)+ ρ′φ̂t ,

d

dt
Pxφ =

∑
i

(M2(i)+ N2(i))+ Pxφ Q + ρ′Pφφ,

d

dt
Pxx =

∑
i

(M3(i)+ M3(i)
′ + N3(i)+ Rχ(i)φ̂i )+ ρ′Pφx + Pxφρ,

d

dt
Pxxφm =

∑
i

(
M4(i,m)+ M4(i,m)′ + Rχ(i)Pφiφm

+ Pxxφi Qim + N4(i)
)+ ρ′Pφxφm + Pxφφmρ.

At a modal observation:

φ̂+ = φ̂− ∗�ϑ,

�x̂ = Pxφ�ϑ,

�Pxφ =−�x̂�φ̂
′ +
∑

k

Pxφφk�ϑk,

�Pxx =−�x̂�x̂ ′ +
∑

k

Pxxφk�ϑk,

�Pxxφm =−�φ̂m�x̂�x̂ ′ −�φ̂m P+xx −�x̂ P+φm x

− P+xφm
�x̂ ′ +

∑
k

Pxxφmφk�ϑk .

At a base-state observation:

�x̂ = γx�νx ,

�Pxφ =−γx H Pχφ,

�Pxx =−γx(H Pχχ H ′ + Rx)γ
′
x ,

�Pxxφm =−γx H Pχxφm − Pxχφm H ′γ ′x .



250 PME Derivation Details

The coefficients are:

coefficient identities for the PME with time-discrete observations

Pχx = Pxx + Pφx(and similarly for Rχφ , etc.,
respectively, Pχφ , etc.),

γx = Pxχ H ′(H Pχχ H ′ + Rx)
−1,

V(ei ) = diag(e′i Q)− ei ⊗ (e′i Q)− (ei ⊗ (e′i Q))′,

Uk(er ) = (er − ek)Qrk(er − ek)
′ + [er ⊗ (e′r Q)

+ (er ⊗ (e′r Q))′ − diag(e′r Q)]δr,k,

M1(i) = (Ai x̂t + Bi ut)φ̂i + Ai Pxφi − BiυPφφi ,

M2(i) = (Ai x̂t + Bi ut)Pφiφ + Ai
(

Pxφφi + Pxφφ̂i
)

− Biυ
(

Pφφφi − Pφφφ̂i
)
,

N2(i) =
∑

l

Qil
(
M(i, l)Rxφi + θ(i, l)x̂ i

)
e′l,

M3(i) = (Ai x̂t + Bi ut)Pφi x + Ai
(

Pxxφi + Pxx φ̂i
)

− Biυ
(

Pφxφi − Pφx φ̂i
)
,

N3(i) =
∑

l

Qil
(
M(i, l)Rxxφi M(i, l)′ + M(i, l)Rxφiθ(i, l)′

+ θ(i, l)Rφi x M(i, l)′ + θ(i, l)φ̂iθ(i, l)′
)
,

M4(i,m) = (Ai x̂t + Bi ut)Pφi xφm + Ai
(

Pxxφiφm + Pxxφm φ̂i − Pxφi Pφm x
)

− Biυ
(
(ei − φ̂)Pφi x

(
δi,m − φ̂m − Pφφi Pxφm

))
,

N4(i,m) =
∑

l

Qil
(
M(i, l)

(
P(xxφi )φm + δl,m Rxxφi

)
M(i, l)′

+ M(i, l)
((

P(xφm)φ

)
.i + δl,m Rxφi

)
θ(i, l)′

+ θ(i, l)
((

P(xφm)φ

)
i. + δl,m Rφi x

)
M(i, l)′

+ θ(i, l)
(

Pφiφm + δl,m φ̂i
)
θ(i, l)′

)
.

+ Qim
(
M(i,m)P(xφi )x + θ(i,m)Rφi x

)
+ P(xφi )x M(i,m)′ + Rxφi θ(i,m)′

)
.
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COM Derivation Details

At time t = kT , [q j [k](ζ )] is a Gaussian sum with N terms in each component:

q j [k](ζ ) =
N∑

l=1

α
j
l [k]

∣∣D j
l [k]

∣∣ 1
2 exp−1

2

{(
ζ − m j

l [k]
)′D j

l [k]
(
ζ − m j

l [k]
)}
.

The recurrence relation for qi [k + 1] is given in (9.18):

qi [k + 1](z) =
∑

j

�i j z[k + 1]′P.i |C j |−1�(F−1(y[k + 1]−Hi (z + χi )))

×
∫
�
�
(
C−1

j (z − A jζ + χi − χ j )
)
q j [k](ζ ) dζ.

Expand the product of Gaussian pattern functions in (9.18). In what follows, fac-
tors common across all modal hypotheses will be ignored without comment. We
get

�(F−1(y[k + 1]− Hi (z + χi )))�
(
C−1

j (z − A jζ + χi − χ j )
)
q[k] j (ζ )

=
N∑

l=1

α
j
l [k]

∣∣D j
l [k]

∣∣ 1
2 exp−1

2
J1(l),

where

J1(l) =
(
ζ − m j

l [k]
)′D j

l [k]
(
ζ − m j

l [k]
)

+ (C−1
j (z − A jζ + χi − χ j )

)′(C−1
j (z − A jζ + χi − χ j )

)
+ (F−1(y[k + 1]− Hi (z + χi )))

′(F−1(y[k + 1]− Hi (z + χi ))).

The argument of the exponential is a quadratic form. Define a new set of coefficient
matrices:

A j
l [k] = D j

l [k]+ A′j Dχ( j)A j ,

251
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B j [k](l; i) = D j
l [k] m j

l [k]+ A′j Dχ( j)(z + χi − χ j ),

C j [k](l; i) = m j
l [k]′D j

l [k]m j
l [k]+ (z + χi − χ j )

′Dχ( j)(z + χi − χ j )

+ (y[k + 1]− Hi (z + χi ))
′Dx(y[k + 1]− Hi (z + χi )).

The exponential factor can be written

exp−1

2
J1(l) =

∣∣A j
l [k]

∣∣− 1
2 exp−1

2

{
C j [k](l; i)− B j [k](l; i)′

×A j
l [k]−1 B j [k](l; i)

}
Nζ

(
A j

l [k]−1 B j [k](l; i), A j
l [k]−1).

Next complete the squares in z to get

B j [k](l; i) = H j z + Ei [k](l; j),

H j = A′j Dχ( j),

E j [k](l; i) = D j
l [k]m j

l [k]+ A′j Dχ( j)(χi − χ j )

and

C j [k](l; i) = z′F j [k](l; i)z − 2z′K j [k](l; i)+ G j [k](l; i),

F j [k](l; i) = Dχ( j)+ H ′
i Dx Hi ,

K j [k](l; i) = H ′
i Dx(y[k + 1]− Hiχi )− Dχ( j)(χi − χ j ),

G j [k](l; i) = m j
l [k]′D j

l [k]m j
l [k]+ (χi − χ j )

′Dχ( j)(χi − χ j )

+(y[k + 1]− Hiχi )
′Dx(y[k + 1]− Hiχi ).

Completing the squares and combining gives

exp−1

2
J1(l) =

∣∣A j
l [k]

∣∣− 1
2
∣∣F j [k](l; i)− (H j )′A j

l [k]−1 H j ∣∣− 1
2

× exp−1

2

{
G j [k](l; i)− E j [k](l; i)′A j

l [k]−1 E j [k](l; i)

−J2(l)
′ J3(l)

−1 J2(l)
}

Nζ

(
A j

l [k]−1 B j [k](l; i), A j
l [k]−1)

×Nz(J3(l)
−1 J2(l), J3(l)

−1),

where

J2(l) = (H j )′A j
l [k]−1 E j [k](l; i)+ K j [k](l; i),

J3(l) = F j [k](l; i)− (H j )′A j
l [k]−1 H j .
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Now integrate to obtain∫
�
�(F−1(y[k+1]−Hi (z + χi )))�

(
C−1

j (z−A jζ + χi−χ j )
)
q[k] j (ζ ) dζ

=
N∑

l=1

α
j
l [k]

∣∣D j
l [k]

∣∣ 1
2
∣∣A j

l [k]
∣∣− 1

2
∣∣F j [k](l; i)− (H j )′A j

l [k]−1 H j ∣∣− 1
2

× exp−1

2

{
G j [k](l; i)− E j [k](l; i)′A j

l [k]−1 E j [k](l; i)

−J2(l)
′ J3(l)

−1 J2(l)
}

Nz(J3(l)
−1 J2(l), J3(l)

−1).

Then qi [k + 1] is a Gaussian sum with

Di [k + 1](l; j)=F j [k](l; i)− (H j )′A j
l [k]−1 H j ,

mi [k + 1](l; j)= Pi [k + 1](l; j)
(
(H j )′A j

l [k]−1 E j [k](l; i)+K j [k](l; i)
)
,

αi [k + 1](l; j)=�i j z[k + 1]′P.i |C j |−1α
j
l [k]

∣∣D j
l [k]

∣∣ 1
2
∣∣A j

l [k]
∣∣− 1

2

×|Di [k + 1](l; j)|− 1
2 exp−1

2

{
G j [k](l; i)

−E j [k](l; i)′A j
l [k]−1 E j [k](l; i)− mi [k + 1](l; j)′

×Di [k + 1](l; j)mi [k + 1](l; j)
}
.

The expressions for the coefficients can be simplified. Note first that

Di [k + 1](l; j) = Dχ( j)+ H ′
i Dx Hi − Dχ( j)A j

(
D j

l [k]

+A′j Dχ( j)A j )
−1 A′j Dχ( j)

= H ′
i Dx Hi +

(
Rχ( j)+ A j P j

l [k]A′j
)−1

.

This can be written in more conventional form as

P j
l [k + 1]− = A j P j

l [k]A′j + Rχ( j)

followed by

Di [k + 1](l; j) = D j
l [k + 1]− + H ′

i Dx Hi .

With di [k](l; j) = Di [k](l; j)mi [k](l; j), we have

di [k + 1](l; j) = (H j )′A j
l [k]−1 E j [k](l; i)+ K j [k](l; i)
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= Dχ( j)A j
(
D j

l [k]+ A′j Dχ( j)A j
)−1(D j

l [k]m j
l [k]

+A′j Dχ( j)(χi − χ j )
)

+H ′
i Dx(y[k + 1]− Hiχi )− Dχ( j)(χi − χ j )

= Dχ( j)A j
(
D j

l [k]+ A′j Dχ( j)A j
)−1d j

l [k]

+(Dχ( j)A j
(
D j

l [k]+ A′j Dχ( j)A j
)−1 A′j Dχ( j)

−Dχ( j)
)
(χi − χ j )+ H ′

i Dx(y[k + 1]− Hiχi ).

Write this as

d j
l [k + 1]− = Dχ( j)A j

(
D j

l [k]+ A′j Dχ( j)A j
)−1d j

l [k],

di [k + 1](l; j) = d j
l [k + 1]− + H ′

i Dx(y[k + 1]− Hiχi )

−D j
l [k + 1]−(χi − χ j ).

Note that(
D j

l [k]+ A′j Dχ( j)A j
)−1

= A−T
j

(
I − (A−1

j Rχ( j)A−T
j + P j

l [k]
)−1 A−1

j Rχ( j)A−T
j

)
.

So

P j
l [k + 1]−Dχ( j)A

(
D j

l [k]+ A′j Dχ( j)A j
)−1

= A j
(

A−1
j Rχ( j)A−T

j + P j
l [k]

)(
I − (A−1

j Rχ( j)A−T
j

+P j
l [k]

)−1 Rχ( j)A−T
j

= A j
(

A−1
j Rχ( j)A−T

j + P j
l [k]

)− A j A−1
j Rχ( j)A−T

j

= A j P j
l [k].

Hence

P j
l [k + 1]−d j

l [k + 1]− = A j P j
l [k] d j

l [k]

= A j m
j
l [k].

This can be written

m j
l [k + 1]− = A j m

j
l [k].
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The expression for the weighting coefficients is complicated in appearance. The
exponential argument in αi [k + 1](l; j) can be rewritten as

G j [k](l; i)− E j [k](l; i)′A j
l [k]−1 E j [k](l; i)− J2(l)

′ J3(l)
−1 J2(l)

= d j
l [k]′P j

l [k]d j
l [k]+ (χi − χ j )

′Dχ( j)(χi − χ j )

+ (y[k + 1]− Hiχi )
′Dx(y[k + 1]− Hiχi )

− (d j
l [k]+A′j Dχ( j)(χi−χ j )

)′A j
l [k]−1(d j

l [k]+A′j Dχ( j)(χi−χ j )
)

− di [k + 1](l; j)′Pi [k + 1](l; j)di [k + 1](l; j).

But

d j
l [k]′P j

l [k]d j
l [k]− d j

l [k]′A j
l [k]−1d j

l [k]

= d j
l [k]′

(
P j

l [k]− A j
l [k]−1)d j

l [k]

= d j
l [k]′P j

l [k]A′j P j
l [k + 1]−A j P j

l [k]d j
l [k]

= m j
l [k]′A′j D j

l [k + 1]−A j m
j
l [k].

Also,

(χi−χ j )
′Dχ( j)(χi−χ j )−(A′j Dχ( j)(χi−χ j ))

′A j
l [k]−1(A′j Dχ( j)(χi−χ j ))

= (χi − χ j )
′D j

l [k + 1]−(χi − χ j ).

Finally,

−2d j
l [k]′A j

l [k]−1 A′j Dχ( j)(χi − χ j ) = 2
(
d j

l [k + 1]−
)′
(χi − χ j )

= −2
(
m j

l [k + 1]−
)′D j

l [k + 1]−(χi − χ j ).

Therefore, with some cancellation of terms, we obtain

G j [k](l; i)− E j [k](l; i)′A j
l [k]−1 E j [k](l; i)− J2(l)

′ J3(l)
−1 J2(l)

= mi [k + 1](l; j)′Di [k + 1](l; j)mi [k + 1](l; j)

−(m j
l [k + 1]− + χ j − χi

)′D j
l [k + 1]−

(
m j

l [k + 1]− + χ j − χi
)

+(y[k + 1]− Hiχi )
′Dx(y[k + 1]− Hiχi ).

Also, ∣∣D j
l [k]

∣∣ 1
2
∣∣A j

l [k]
∣∣− 1

2 |J3(l)|− 1
2

= ∣∣D j
l [k]

∣∣ 1
2
∣∣D j

l [k]+ A′j Dχ( j)A j
∣∣− 1

2 |Pi [k + 1](l; j)| 1
2 .

The result thus follows.
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actuating signal, 155
agility (of a target), 83
anchoring, 63
automatic target recognition, 171

base-state innovations, 44
base-state model

JTS, 10
time-continuous, 7
time-discrete, 24

base-state process, 3, 5
base-state sensor, 43
Bayes’ Theorem, conditional, 200
binary phase shift keying, 211

canonical moment, 48
causal, 2
certainty equivalence principle, 47, 157, 159, 166
change-of-measure (COM) estimator, 199
coquadratic variation, 43
coarser σ -field, xvi
cognitive metaspace, 70

metastate aggregates, 70
metastates, 70

COM-estimator, 204
base-state recurrence, 205
modal mixing, 207
updated distribution, 208

composite martingale, xviii
conditional expectation, xvi, xvii
conditional mean, see conditional expectation
control, 1

dual control, 160
feedback, 1
feedforward, 5
gain scheduling, 158
LQ-regulator, 157
open-loop-optimal-feedback control, 161
regulation signal, 3

corlol (continuous on right, limits on left), xx

data frame, 34
data fusion

low-level, 35
track, 35

discernibility matrix, 39
discrete time state, xx
Doob–Meyer Decomposition Theorem, xx

endogenous actuating signal, 155
environmental process, 2
error covariance

conditional, 11
estimation, 41

modal, 44
moment formulation, 47

estimation problem, 3
estimator

metastate probability, 59
evasion, 83
excess error, 13
expectation, conditional, see conditional expectation
eye chart, 211

feather plot, 15
filtration, xvi

left continuous, xvi
finer σ -field, xvi
FLIR, forward-looking infrared, 86

gain scheduling, 158
gamma probability density, 106
Gaussian minimum shift keying, 209
Gaussian wavelet distribution, 28
generator (of a Markov process), xvii

Hadamard product, xv
hybrid system, 8

IMM, 198
base-state estimator, 29
interacting-multiple-model filter, 28
mixing probability, 31
modal-state estimator, 30

impact point, 187
impact point prediction, 187
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information matrix, 29
information state, 160
infrared sensor, 86
innovations process, xix, 44

base-state, 44
modal-state, 44

intersymbol interference, 211

JTS, 7, 10
jump-translating-system, 7

Kalman filter, 4, 11, 41
covariance form, 29
extended, 15
information filter, 29
time-continuous state, time-continuous

measurement, 11
time-continuous state, time-discrete

measurements, 12
time-continuous state, time-discrete measurements;

endogenous actuating signal, 155
time-discrete state, time-discrete measurement, 25

linear jump system, 7
LJS, 7
low-level data fusion, 35
LQ-regulator, 157

Markov process, xvii
generator, xvii

martingale
composite, xviii
predictable compensator, xx
purely discontinuous, 10

Martingale Representation Theorem, xx
matrix

square root, xvi
matrix square root, xvi
mean-square-error, 3
measurement

modal, 34, 35
measurement residual, 10
metastate, 2, 56, 58
metastate aggregates, 68
metastate probability estimator, 59
metastates, 70
modal estimation, 44
modal observations, 34
modal-state

innovations, 44
measurement error

nearest neighbor error, 90
projection error, 91
uniformly distributed errors, 90

modal-state measurement, 34, 35
time-continuous

additive noise, 36
classifier, 40

time-discrete
additive noise, 36
classifier, 40

modal-state model
time-continuous, 8
time-discrete, 23

modal-state process, 5
modal-state sensor, 43
mode dependent measurements, 142, 144
model

base-state
JTS, 10
time-discrete, 24

linear-Gauss–Markov, 4
modal-state

time-discrete, 23
plant, 1, 2
polymorphic, 6
system, 1

moment
canonical, 48
PD-moment, 48
sequent, 48

multiple model filter, 26
IMM, 28
path-length-one, 26

NNE, nearest neighbor error, 90

observation noise, xix
observation process, xix
observations

discrete time, xix
modal-state, 34

open-loop-optimal-feedback control, 161
optional cross quadratic variation, xviii
optional quadratic variation, xviii
order bias, 60
output latency, 40
output process, xix

PD-moment, 48
PE, projection error, 91
perturbation variables, 3
plant, 1

input, 2
model, 2
output, 2
state, 2

plant linearization, 8
plant model, 1
plant state

measurement
mode dependence, 142

plant state measurement
time-continuous, 4, 10
time-discrete, 10

plant state process, 3
PME

base-state rotation; χ = 0, 119
continuous base-state, time-discrete

measurements, 96
continuous base-state; time-discrete

measurements, 174
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continuous plant state; χ �= 0, 135
impact point prediction, 187
LJS with control, 162
mode dependence in the plant state sensor, 144
plant state translation; χ = 0, 127
time-continuous plant; time-continuous

measurement, 50
time-continuous plant; time-discrete

measurement, 54
polymorphic estimator, 49
polymorphic model, 6
predictability, 63
predictable compensator, xx, 46
predictable quadratic variation, xvii
predictor, 2
probability space, xvi, 2
process

adapted, xvi
Brownian motion, xvii

intensity, xvii
Gaussian white noise, xiv
increments, xvii
innovations, xix, 44
Markov, xvii
martingale, xvii

increments, xx
predictable compensator, xx
purely discontinuous, xviii

optional quadratic variation, xviii
predictable, xvi
predictable compensator, 46
predictable quadratic variation, xvii
renewal process, 106
semimartingale, 43

progressive deepening, 70
pseudonoise, 18
purely discontinuous martingale, 10

quadratic covariation, see coquadratic variation, 43
quadratic variation

optional, xviii
optional cross, xviii
predictable, xvii

random process, xvi
random variable, xvi

Gaussian, xv

recognition-primed decision making, 56
regime, 3
remotely piloted vehicle (RPB), 164
renewal process, 106
rotation (of base-state), 119

sanguinity, 61
semimartingale, 43
sensor

base-state, 43
modal-state, 43

separation principle, 158
sequent moment, 48
set point, 3
σ -field, xvi
situation assessment, 56

uncertainty, 59
complexity, 58
anchoring, 63
complexity, 68
order-bias, 61
progressive deepening, 70
tempo, 58, 68
uncertainty, 71

small-noise approximation, 54
square root

matrix, xvi
state

discrete time, xx
stochastic differential equation, xiv
subscripts, xv
system model, 1

tempo, 58
track data fusion, 35

UDE, uniformly distributed error, 90
uncertainty, 59
uncertainty matrix, 12, 29
unimodal, 6
unimorphic, 6
unnormalized probability density, 22

white-noise equivalent, 18

zygostate, 5, 42
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A(., j), the j th column of matrix A, 73
A(i, .), the i th row of matrix A, 73
[η, η]t , optional quadratic variation, xviii
≈, approximately equal to, xviii∫
�, an integral over the entire applicable space or domain �, xv
�→, a modal state transition, e.g., ei �→ e j , 6
∗, Hadamard (element by element) vector product, xv
1, a vector of all ones, dimension clear from the context, xv
A(r : s, t : v), the submatrix of A containing rows r through s of columns t

through v, xv
{ν[k](z)}, a (possibly vector) discrete sequence of functions of z, xv
{ν[k]}, a discrete sequence indexed by k, xv
{ν1}, the first component of the vector sequence {νt}, xv
{νx}, a subvector process in {νt} associated with the process {xt}, xv
{νi [k](z)}, the i th component of {ν[k](z)}, xv
{νt}, a continuous-time process indexed by t , xv
Ai , a composite plant dynamics matrix, Ai +∑l Qil M(i, l), 9
�mt , mt − mt−, xviii
D j

yy[k + 1], the inverse of R j
yy[k + 1], 30

d[k], Dxx [k]x̂[k], 29
�ϑt scaled modal observation, �ϑt = h(λ−1

t ∗�zt), 49
dw, or dwt , for a stochastic process {wt} the forward differential increment

wt+dt − wt , where dt > 0, xvii
Dx , the inverse of observation noise covariance, Dx = R−1

x , 29
Dxx [k], the inverse of Pxx [k], 29
Dyy[k], the matrix inverse of Ryy[k], 12
e, canonical unit vector, xv
ηc, the continuous part of the martingale process η, xviii
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ηd , the purely discontinuous part of the martingale process η, xviii
ei , the i th canonical unit vector, dimension understood from context, xv
Ei , a square matrix of all zeros except for a 1 at position (i, i), xv
Ei j , a square matrix of all zeros except for a 1 at position (i, j), xv
E[x |Y], the conditional expectation of x given the σ -field Y , xvi
F , a σ -field, a set of events (subsets) on an outcome set �, xvi
φ(k − s : k − 1), the s-length sequence of modal states taken by φ on the time-

discrete interval [k − s, k − 1], 28
φ̂([κ]; [k − s : k − 1]), the probability that φ on the time-discrete interval [k − s,

k − 1] is the κth such sequence, 28
{φt}, a process (usually Markov) on the canonical unit vectors, ei , i ∈ S, xvii
{F t}, a (fundamental) filtration on � contained in F , 2
{F t}, the filtration generated by {xt , φt , yt , zt}, 156
{Gφ

t }, the filtration generated by {yt , φt}, 11, 156
{GφT

t }, the filtration generated by {yt} and {φτ ; τ ∈ [0,T]}, 156
{Gt}, the filtration generated by {gt}, 3
{Gt}, the filtration generated by {yt , zt}, 156
I, the identity matrix, size clear from context, xv
λ−1, where λ is a vector, the vector of reciprocals, xv
λt , the F t -conditional rate of modal-state observations, 39
M(i, l), a base-state rotation or scaling associated with a modal-state transition

i �→ l, 6
N(m, P), the Gaussian (normal) distribution with mean m and covariance P , xv
{Ot }, 48
�, as a variable, a modal transition matrix, 23
Pφφ , the Gt -covariance of φt , 46
Pφχ , the Gt -covariance of φ and χ , 46
PME(0.55,10), a PME with target type measurement fidelity 0.55 and measure-

ment rate 10 /s, 177
{Φt}, a modal-state process, 2
Pxφφi (t) the third central moment, E[x̃t φ̃

′
t φ̃i |Gt ], 50

P(x φ̃i )xφm
, the compound central moment E[ ˜(xt φ̃i )x̃

′
t φ̃m , 50

Pxi x , the i th row of Pxx , usually associated with the i th component of the vector x ,
xv

Pxχ , covariance process for xt and χt , 54
Pxx(0), Pxx at t = 0, 3
Pxxφi , the third central moment E[x̃t x̃t φ̂i |Gt ], 50
Pxxφiφm , the fourth central moment E[x̃t x̃ ′t φ̃r φ̃m |Gt ], 50
P(xxφi )φm , the compound central moment E[ ˜(xt x ′tφi )φ̃m |Gt ], 50
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Pxxi , the i th column of Pxx , usually associated with the i th component of x , xvi
P j

xx [k + 1], the x-covariance for the j th model in a multiple model estimator, 29
Pχχ , covariance process for χt , 54
Q, a Markov transition matrix, xvii
r , radians, 14
R, the field of real numbers, xv
Rφφ , E[φtφ

′
t |Gt , 46

Rφχ , E[φχ ′ |Gt ], the Gt -cross correlation of φ and χ , 46
ρ(i, l), a translational discontinuity in plant base-state associated with a modal-

state transition from i �→ l, 6
R j

yy[k + 1], the j th model covariance of y at time k + 1, 30
Rk, the k-dimensional space of vectors over R, xv
r/s, radians per second, 14
Rxφφi (t), the third moment E[xtφ

′
tφi |Gt ], 50

Rxxφi , the third moment E[xt x ′tφi |Gt ], 50
Rxy , the correlation of x and y, E[xy′], also written with explicit reference to

time dependence, Rxy(t), or for discrete time, Rxy[k], xv
Ryy[k], the covariance of y[k], 12
S, integer index set, xv
S j

yy[k + 1], a matrix square root of D j
yy[k + 1], 30

Syy(t), a matrix square root of the positive definite symmetric matrix Pyy, Syy(t)′

Syy(t) = Pyy(t), xvi
Syy[k], a matrix square root of Ryy[k], 12
T, final time of interest, as in [0,T], xv
Tr(A), the trace of the matrix A, 72
υn , a nominal value of the actuating signal υt associated with the nominal oper-

ating point χn , 3
υ, a block matrix array of the nominal actuating inputs υi : υ = [υ1|υ2| · · ·

|υn|, 4
{ut}, an exogenous plant input process and, in particular, a perturbation input

given by ut = υt − υn , 3
W , the intensity of the Brownian motion {wt}, xvii
{wt}, a Brownian motion process, xvii
{χt}, a plant state process, 2
χ, a block matrix array of the nominal operating points χi : χ = [χ1|χ2| · · ·

|χn], 4
{X φT

t }, the filtration generated by {xt} and {φτ ; τ ∈ [0,T]}, 156
{X φ

t }, the filtration generated by {xt , φt}, 156
x̂ j [k + 1], the j th estimate of x[k + 1] in a multiple model context, 29
x̂t , the conditional mean of xt , xvii
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x̂t ;Y t , the conditional mean of x̂t with explicit reference to the conditioning
σ -field Y t , xvii

χn , a nominal operating point for the state process χt , 3
x̃t , the estimation error in x̂t , xt − x̃t , xvii
{xt}, a base-state process and, in particular, a perturbation process given by xt =

χt = χn , 3
{X z

t }, the filtration generated by {xt , zt}, 156
Y , a σ -field on an outcome set �, xvi
Ys , the coarsest σ -field with respect to which all random variables {y(τ ); 0 ≤

τ ≤ s} are measurable, where {yt} is a random process on [0,T] and 0 ≤ s ≤T,
xvi

{yt}, a stochastic process; in particular, an observation process, 41
{Y t}, the filtration generated by {yt}, 4
{Y t−}, the left continuous version of {Y t}, xvi
yt+, limτ→t+yτ , xvi
(�, F , P), a probability space on the set � with σ -algebra F and probability

measure P , xvi
(�, F , P; F t), a probability triple together with a filtration, {F t}, xvii
{zt}, a stochastic process; in particular, the modal-state observation process, 43
Z t , the filtration generated by {zt}, 38
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